1
|
Abstract
More than 50 years after the identification of RNA polymerase II, the enzyme responsible for the transcription of most eukaryotic genes, studies have continued to reveal fresh aspects of its structure and regulation. New technologies, coupled with years of development of a vast catalog of RNA polymerase II accessory proteins and activities, have led to new revelations about the transcription process. The maturation of cryo-electron microscopy as a tool for unraveling the detailed structure of large molecular machines has provided numerous structures of the enzyme and its accessory factors. Advances in biophysical methods have enabled the observation of a single polymerase’s behavior, distinct from work on aggregate population averages. Other recent work has revealed new properties and activities of the general initiation factors that RNA polymerase II employs to accurately initiate transcription, as well as chromatin proteins that control RNA polymerase II’s firing frequency, and elongation factors that facilitate the enzyme’s departure from the promoter and which control sequential steps and obstacles that must be navigated by elongating RNA polymerase II. There has also been a growing appreciation of the physical properties conferred upon many of these proteins by regions of each polypeptide that are of low primary sequence complexity and that are often intrinsically disordered. This peculiar feature of a surprisingly large number of proteins enables a disordered region of the protein to morph into a stable structure and creates an opportunity for pathway participants to dynamically partition into subcompartments of the nucleus. These subcompartments host designated portions of the chemical reactions that lead to mRNA synthesis. This article highlights a selection of recent findings that reveal some of the resolved workings of RNA polymerase II and its ensemble of supporting factors.
Collapse
Affiliation(s)
- Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Chwalenia K, Qin F, Singh S, Li H. A cell-based splicing reporter system to identify regulators of cis-splicing between adjacent genes. Nucleic Acids Res 2019; 47:e24. [PMID: 30590765 PMCID: PMC6393300 DOI: 10.1093/nar/gky1288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Chimeric RNAs generated by cis-splicing between adjacent genes (cis-SAGe) are increasingly recognized as a widespread phenomenon. These chimeric messenger RNAs are present in normal human cells, and are also detected in various cancers. The mechanisms for how this group of chimeras is formed are not yet clear, in part due to the lack of a tractable system for their experimental investigation. Here we developed a fast, easy and versatile cell-based reporter system to identify regulators of cis-SAGe. The reporter, consisting of four main cassettes, simultaneously measures the effects of a candidate regulator on cis-SAGe and canonical splicing. Using this cell-based assay, we screened 102 candidate factors involved in RNA pol II cleavage and termination, elongation, splicing, alternative splicing and R-loop formation. We discovered that two factors, SRRM1 and SF3B1, affect not only cis-SAGe chimeras, but also other types of chimeric RNAs in a genome-wide fashion. This system can be used for studying trans-acting factors and cis-acting sequence elements and factors, as well as for screening small molecule inhibitors.
Collapse
Affiliation(s)
- Katarzyna Chwalenia
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Fujun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
3
|
Kamieniarz-Gdula K, Proudfoot NJ. Transcriptional Control by Premature Termination: A Forgotten Mechanism. Trends Genet 2019; 35:553-564. [PMID: 31213387 PMCID: PMC7471841 DOI: 10.1016/j.tig.2019.05.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022]
Abstract
The concept of early termination as an important means of transcriptional control has long been established. Even so, its role in metazoan gene expression is underappreciated. Recent technological advances provide novel insights into premature transcription termination (PTT). This process is frequent, widespread, and can occur close to the transcription start site (TSS), or within the gene body. Stable prematurely terminated transcripts contribute to the transcriptome as instances of alternative polyadenylation (APA). Independently of transcript stability and function, premature termination opposes the formation of full-length transcripts, thereby negatively regulating gene expression, especially of transcriptional regulators. Premature termination can be beneficial or harmful, depending on its context. As a result, multiple factors have evolved to control this process.
Collapse
Affiliation(s)
- Kinga Kamieniarz-Gdula
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK; Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland; Center for Advanced Technology, Adam Mickiewicz University, Umultowska 89c, 61-614 Poznań, Poland.
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
4
|
Abstract
In trypanosomes, RNA polymerase II transcription is polycistronic and individual mRNAs are excised by trans-splicing and polyadenylation. The lack of individual gene transcription control is compensated by control of mRNA processing, translation and degradation. Although the basic mechanisms of mRNA decay and translation are evolutionarily conserved, there are also unique aspects, such as the existence of six cap-binding translation initiation factor homologues, a novel decapping enzyme and an mRNA stabilizing complex that is recruited by RNA-binding proteins. High-throughput analyses have identified nearly a hundred regulatory mRNA-binding proteins, making trypanosomes valuable as a model system to investigate post-transcriptional regulation.
Collapse
Affiliation(s)
- Christine Clayton
- University of Heidelberg Center for Molecular Biology (ZMBH), Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| |
Collapse
|
5
|
Zhu F, Nair RR, Fisher EMC, Cunningham TJ. Humanising the mouse genome piece by piece. Nat Commun 2019; 10:1845. [PMID: 31015419 PMCID: PMC6478830 DOI: 10.1038/s41467-019-09716-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/23/2019] [Indexed: 12/14/2022] Open
Abstract
To better understand human health and disease, researchers create a wide variety of mouse models that carry human DNA. With recent advances in genome engineering, the targeted replacement of mouse genomic regions with orthologous human sequences has become increasingly viable, ranging from finely tuned humanisation of individual nucleotides and amino acids to the incorporation of many megabases of human DNA. Here, we examine emerging technologies for targeted genomic humanisation, we review the spectrum of existing genomically humanised mouse models and the insights such models have provided, and consider the lessons learned for designing such models in the future. Generation of transgenic mice has become routine in studying gene function and disease mechanisms, but often this is not enough to fully understand human biology. Here, the authors review the current state of the art of targeted genomic humanisation strategies and their advantages over classic approaches.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Remya R Nair
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | | |
Collapse
|
6
|
RNA Polymerase II Transcription Attenuation at the Yeast DNA Repair Gene, DEF1, Involves Sen1-Dependent and Polyadenylation Site-Dependent Termination. G3-GENES GENOMES GENETICS 2018; 8:2043-2058. [PMID: 29686108 PMCID: PMC5982831 DOI: 10.1534/g3.118.200072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Termination of RNA Polymerase II (Pol II) activity serves a vital cellular role by separating ubiquitous transcription units and influencing RNA fate and function. In the yeast Saccharomyces cerevisiae, Pol II termination is carried out by cleavage and polyadenylation factor (CPF-CF) and Nrd1-Nab3-Sen1 (NNS) complexes, which operate primarily at mRNA and non-coding RNA genes, respectively. Premature Pol II termination (attenuation) contributes to gene regulation, but there is limited knowledge of its prevalence and biological significance. In particular, it is unclear how much crosstalk occurs between CPF-CF and NNS complexes and how Pol II attenuation is modulated during stress adaptation. In this study, we have identified an attenuator in the DEF1 DNA repair gene, which includes a portion of the 5′-untranslated region (UTR) and upstream open reading frame (ORF). Using a plasmid-based reporter gene system, we conducted a genetic screen of 14 termination mutants and their ability to confer Pol II read-through defects. The DEF1 attenuator behaved as a hybrid terminator, relying heavily on CPF-CF and Sen1 but without Nrd1 and Nab3 involvement. Our genetic selection identified 22 cis-acting point mutations that clustered into four regions, including a polyadenylation site efficiency element that genetically interacts with its cognate binding-protein Hrp1. Outside of the reporter gene context, a DEF1 attenuator mutant increased mRNA and protein expression, exacerbating the toxicity of a constitutively active Def1 protein. Overall, our data support a biologically significant role for transcription attenuation in regulating DEF1 expression, which can be modulated during the DNA damage response.
Collapse
|
7
|
Garg A, Sanchez AM, Shuman S, Schwer B. A long noncoding (lnc)RNA governs expression of the phosphate transporter Pho84 in fission yeast and has cascading effects on the flanking prt lncRNA and pho1 genes. J Biol Chem 2018; 293:4456-4467. [PMID: 29414789 DOI: 10.1074/jbc.ra117.001352] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/16/2018] [Indexed: 11/06/2022] Open
Abstract
The expression of the phosphate transporter Pho84 in fission yeast Schizosaccharomyces pombe is repressed in phosphate-rich medium and induced during phosphate starvation. Two other phosphate-responsive genes in S. pombe (pho1 and tgp1) had been shown to be repressed in cis by transcription of a long noncoding (lnc) RNA from the upstream flanking gene, but whether pho84 expression is regulated in this manner is unclear. Here, we show that repression of pho84 is enforced by transcription of the SPBC8E4.02c locus upstream of pho84 to produce a lncRNA that we name prt2 ( pho-repressive transcript 2). We identify two essential elements of the prt2 promoter, a HomolD box and a TATA box, mutations of which inactivate the prt2 promoter and de-repress the downstream pho84 promoter under phosphate-replete conditions. We find that prt2 promoter inactivation also elicits a cascade effect on the adjacent downstream prt (lncRNA) and pho1 (acid phosphatase) genes, whereby increased pho84 transcription down-regulates prt lncRNA transcription and thereby de-represses pho1 Our results establish a unified model for the repressive arm of fission yeast phosphate homeostasis, in which transcription of prt2, prt, and nc-tgp1 lncRNAs interferes with the promoters of the flanking pho84, pho1, and tgp1 genes, respectively.
Collapse
Affiliation(s)
- Angad Garg
- From the Molecular Biology Program, Sloan-Kettering Institute, New York and
| | - Ana M Sanchez
- the Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| | - Stewart Shuman
- From the Molecular Biology Program, Sloan-Kettering Institute, New York and
| | - Beate Schwer
- the Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
8
|
Sanchez AM, Shuman S, Schwer B. Poly(A) site choice and Pol2 CTD Serine-5 status govern lncRNA control of phosphate-responsive tgp1 gene expression in fission yeast. RNA (NEW YORK, N.Y.) 2018; 24:237-250. [PMID: 29122971 PMCID: PMC5769750 DOI: 10.1261/rna.063966.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/09/2017] [Indexed: 05/24/2023]
Abstract
Expression of fission yeast glycerophosphate transporter Tgp1 is repressed in phosphate-rich medium and induced during phosphate starvation. Repression is enforced by transcription of the nc-tgp1 locus upstream of tgp1 to produce a long noncoding (lnc) RNA. Here we identify two essential elements of the nc-tgp1 promoter: a TATA box -30TATATATA-23 and a HomolD box -64CAGTCACA-57, mutations of which inactivate the nc-tgp1 promoter and de-repress the downstream tgp1 promoter under phosphate-replete conditions. The nc-tgp1 lncRNA poly(A) site maps to nucleotide +1636 of the transcription unit, which coincides with the binding site for Pho7 (1632TCGGACATTCAA1643), the transcription factor that drives tgp1 expression. Overlap between the lncRNA template and the tgp1 promoter points to transcriptional interference as the simplest basis for lncRNA repression. We identify a shorter RNA derived from the nc-tgp1 locus, polyadenylated at position +508, well upstream of the tgp1 promoter. Mutating the nc-tgp1-short RNA polyadenylation signal abolishes de-repression of the downstream tgp1 promoter elicited by Pol2 CTD Ser5Ala phospho-site mutation. Ser5 mutation favors utilization of the short RNA poly(A) site, thereby diminishing transcription of the lncRNA that interferes with the tgp1 promoter. Mutating the nc-tgp1-short RNA polyadenylation signal attenuates induction of the tgp1 promoter during phosphate starvation. Polyadenylation site choice governed by CTD Ser5 status adds a new level of lncRNA control of gene expression and reveals a new feature of the fission yeast CTD code.
Collapse
Affiliation(s)
- Ana M Sanchez
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| |
Collapse
|
9
|
Franco-Echevarría E, González-Polo N, Zorrilla S, Martínez-Lumbreras S, Santiveri CM, Campos-Olivas R, Sánchez M, Calvo O, González B, Pérez-Cañadillas JM. The structure of transcription termination factor Nrd1 reveals an original mode for GUAA recognition. Nucleic Acids Res 2017; 45:10293-10305. [PMID: 28973465 PMCID: PMC5737872 DOI: 10.1093/nar/gkx685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Transcription termination of non-coding RNAs is regulated in yeast by a complex of three RNA binding proteins: Nrd1, Nab3 and Sen1. Nrd1 is central in this process by interacting with Rbp1 of RNA polymerase II, Trf4 of TRAMP and GUAA/G terminator sequences. We lack structural data for the last of these binding events. We determined the structures of Nrd1 RNA binding domain and its complexes with three GUAA-containing RNAs, characterized RNA binding energetics and tested rationally designed mutants in vivo. The Nrd1 structure shows an RRM domain fused with a second α/β domain that we name split domain (SD), because it is formed by two non-consecutive segments at each side of the RRM. The GUAA interacts with both domains and with a pocket of water molecules, trapped between the two stacking adenines and the SD. Comprehensive binding studies demonstrate for the first time that Nrd1 has a slight preference for GUAA over GUAG and genetic and functional studies suggest that Nrd1 RNA binding domain might play further roles in non-coding RNAs transcription termination.
Collapse
Affiliation(s)
- Elsa Franco-Echevarría
- Departament of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | | | - Silvia Zorrilla
- Department of Cellular and Molecular Biology, Biological Research Center, CSIC
| | - Santiago Martínez-Lumbreras
- Department of Chemistry, King's College London.,Department of Biological Physical Chemistry, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - Clara M Santiveri
- Spectroscopy and Nuclear Magnetic Resonance Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre
| | - Ramón Campos-Olivas
- Spectroscopy and Nuclear Magnetic Resonance Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca
| | - Beatriz González
- Departament of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - José Manuel Pérez-Cañadillas
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| |
Collapse
|