1
|
Comprehensive transcriptome profiling of Taiwanese colorectal cancer implicates an ethnic basis for pathogenesis. Sci Rep 2020; 10:4526. [PMID: 32161294 PMCID: PMC7066141 DOI: 10.1038/s41598-020-61273-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide. While both genetic and environmental factors have been linked to the incidence and mortality associated with CRC, an ethnic aspect of its etiology has also emerged. Since previous large-scale cancer genomics studies are mostly based on samples of European ancestry, the patterns of clinical events and associated mechanisms in other minority ethnic patients suffering from CRC are largely unexplored. We collected 104 paired and adjacent normal tissue and CRC tumor samples from Taiwanese patients and employed an integrated approach - paired expression profiles of mRNAs and microRNAs (miRNAs) combined with transcriptome-wide network analyses - to catalog the molecular signatures of this regional cohort. On the basis of this dataset, which is the largest ever reported for this type of systems analysis, we made the following key discoveries: (1) In comparison to the The Cancer Genome Atlas (TCGA) data, the Taiwanese CRC tumors show similar perturbations in expressed genes but a distinct enrichment in metastasis-associated pathways. (2) Recurrent as well as novel CRC-associated gene fusions were identified based on the sequencing data. (3) Cancer subtype classification using existing tools reveals a comparable distribution of tumor subtypes between Taiwanese cohort and TCGA datasets; however, this similarity in molecular attributes did not translate into the predicted subtype-related clinical outcomes (i.e., death event). (4) To further elucidate the molecular basis of CRC prognosis, we developed a new stratification strategy based on miRNA-mRNA-associated subtyping (MMAS) and consequently showed that repressed WNT signaling activity is associated with poor prognosis in Taiwanese CRC. In summary, our findings of distinct, hitherto unreported biosignatures underscore the heterogeneity of CRC tumorigenesis, support our hypothesis of an ethnic basis of disease, and provide prospects for translational medicine.
Collapse
|
2
|
Schweppe RE, Pozdeyev N, Pike LA, Korch C, Zhou Q, Sams SB, Sharma V, Pugazhenthi U, Raeburn C, Albuja-Cruz MB, Reigan P, LaBarbera DV, Landa I, Knauf JA, Fagin JA, Haugen BR. Establishment and Characterization of Four Novel Thyroid Cancer Cell Lines and PDX Models Expressing the RET/PTC1 Rearrangement, BRAFV600E, or RASQ61R as Drivers. Mol Cancer Res 2019; 17:1036-1048. [PMID: 30733375 DOI: 10.1158/1541-7786.mcr-18-1026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/12/2018] [Accepted: 02/04/2019] [Indexed: 01/04/2023]
Abstract
Cancer cell lines are critical models to study tumor progression and response to therapy. In 2008, we showed that approximately 50% of thyroid cancer cell lines were redundant or not of thyroid cancer origin. We therefore generated new authenticated thyroid cancer cell lines and patient-derived xenograft (PDX) models using in vitro and feeder cell approaches, and characterized these models in vitro and in vivo. We developed four thyroid cancer cell lines, two derived from 2 different patients with papillary thyroid cancer (PTC) pleural effusions, CUTC5, and CUTC48; one derived from a patient with anaplastic thyroid cancer (ATC), CUTC60; and one derived from a patient with follicular thyroid cancer (FTC), CUTC61. One PDX model (CUTC60-PDX) was also developed. Short tandem repeat (STR) genotyping showed that each cell line and PDX is unique and match the original patient tissue. The CUTC5 and CUTC60 cells harbor the BRAF (V600E) mutation, the CUTC48 cell line expresses the RET/PTC1 rearrangement, and the CUTC61 cells have the HRAS (Q61R) mutation. Moderate to high levels of PAX8 and variable levels of NKX2-1 were detected in each cell line and PDX. The CUTC5 and CUTC60 cell lines form tumors in orthotopic and flank xenograft mouse models. IMPLICATIONS: We have developed the second RET/PTC1-expressing PTC-derived cell line in existence, which is a major advance in studying RET signaling. We have further linked all cell lines to the originating patients, providing a set of novel, authenticated thyroid cancer cell lines and PDX models to study advanced thyroid cancer.
Collapse
Affiliation(s)
- Rebecca E Schweppe
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Nikita Pozdeyev
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura A Pike
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christopher Korch
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Qiong Zhou
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sharon B Sams
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vibha Sharma
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Umarani Pugazhenthi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christopher Raeburn
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Maria B Albuja-Cruz
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Bryan R Haugen
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
3
|
Bhujbal SP, Balasubramanian PK, Joo Cho S. In silico studies on 2-substituted phenol quinazoline derivatives as RET receptor tyrosine kinase antagonists. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2016-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Watson AJ, Hopkins GV, Hitchin S, Begum H, Jones S, Jordan A, Holt S, March HN, Newton R, Small H, Stowell A, Waddell ID, Waszkowycz B, Ogilvie DJ. Identification of selective inhibitors of RET and comparison with current clinical candidates through development and validation of a robust screening cascade. F1000Res 2016; 5:1005. [PMID: 27429741 PMCID: PMC4937820 DOI: 10.12688/f1000research.8724.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
RET (REarranged during Transfection) is a receptor tyrosine kinase, which plays pivotal roles in regulating cell survival, differentiation, proliferation, migration and chemotaxis. Activation of RET is a mechanism of oncogenesis in medullary thyroid carcinomas where both germline and sporadic activating somatic mutations are prevalent. At present, there are no known specific RET inhibitors in clinical development, although many potent inhibitors of RET have been opportunistically identified through selectivity profiling of compounds initially designed to target other tyrosine kinases. Vandetanib and cabozantinib, both multi-kinase inhibitors with RET activity, are approved for use in medullary thyroid carcinoma, but additional pharmacological activities, most notably inhibition of vascular endothelial growth factor - VEGFR2 (KDR), lead to dose-limiting toxicity. The recent identification of RET fusions present in ~1% of lung adenocarcinoma patients has renewed interest in the identification and development of more selective RET inhibitors lacking the toxicities associated with the current treatments. In an earlier publication [Newton et al, 2016; 1] we reported the discovery of a series of 2-substituted phenol quinazolines as potent and selective RET kinase inhibitors. Here we describe the development of the robust screening cascade which allowed the identification and advancement of this chemical series. Furthermore we have profiled a panel of RET-active clinical compounds both to validate the cascade and to confirm that none display a RET-selective target profile.
Collapse
Affiliation(s)
- Amanda J. Watson
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Gemma V. Hopkins
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Samantha Hitchin
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Habiba Begum
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Stuart Jones
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Allan Jordan
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Sarah Holt
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - H. Nikki March
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Rebecca Newton
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Helen Small
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Alex Stowell
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Ian D. Waddell
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Bohdan Waszkowycz
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Donald J. Ogilvie
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| |
Collapse
|
5
|
Watson AJ, Hopkins GV, Hitchin S, Begum H, Jones S, Jordan A, Holt S, March HN, Newton R, Small H, Stowell A, Waddell ID, Waszkowycz B, Ogilvie DJ. Identification of selective inhibitors of RET and comparison with current clinical candidates through development and validation of a robust screening cascade. F1000Res 2016; 5:1005. [PMID: 27429741 PMCID: PMC4937820 DOI: 10.12688/f1000research.8724.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/30/2022] Open
Abstract
RET (REarranged during Transfection) is a receptor tyrosine kinase, which plays pivotal roles in regulating cell survival, differentiation, proliferation, migration and chemotaxis. Activation of RET is a mechanism of oncogenesis in medullary thyroid carcinomas where both germline and sporadic activating somatic mutations are prevalent. At present, there are no known specific RET inhibitors in clinical development, although many potent inhibitors of RET have been opportunistically identified through selectivity profiling of compounds initially designed to target other tyrosine kinases. Vandetanib and cabozantinib, both multi-kinase inhibitors with RET activity, are approved for use in medullary thyroid carcinoma, but additional pharmacological activities, most notably inhibition of vascular endothelial growth factor - VEGFR2 (KDR), lead to dose-limiting toxicity. The recent identification of RET fusions present in ~1% of lung adenocarcinoma patients has renewed interest in the identification and development of more selective RET inhibitors lacking the toxicities associated with the current treatments. In an earlier publication [Newton et al, 2016; 1] we reported the discovery of a series of 2-substituted phenol quinazolines as potent and selective RET kinase inhibitors. Here we describe the development of the robust screening cascade which allowed the identification and advancement of this chemical series. Furthermore we have profiled a panel of RET-active clinical compounds both to validate the cascade and to confirm that none display a RET-selective target profile.
Collapse
Affiliation(s)
- Amanda J. Watson
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Gemma V. Hopkins
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Samantha Hitchin
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Habiba Begum
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Stuart Jones
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Allan Jordan
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Sarah Holt
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - H. Nikki March
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Rebecca Newton
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Helen Small
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Alex Stowell
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Ian D. Waddell
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Bohdan Waszkowycz
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Donald J. Ogilvie
- Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| |
Collapse
|