1
|
Ding B, Bhosale M, Bennett TLR, Heeney M, Plasser F, Esser B, Glöcklhofer F. Reducing undesired solubility of squarephaneic tetraimide for use as an organic battery electrode material. Faraday Discuss 2024; 250:129-144. [PMID: 37965707 PMCID: PMC10926975 DOI: 10.1039/d3fd00145h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 11/16/2023]
Abstract
Locally aromatic alkyl-N-substituted squarephaneic tetraimide (SqTI) conjugated macrocycles are four-electron reducible, owing to global aromaticity and presumed global Baird aromaticity of the dianion and tetraanion states, respectively. However, their good solubility inhibits their application as a battery electrode material. By applying sidechain removal as a strategy to reduce SqTI solubility, we report the development of its unsubstituted derivative SqTI-H, which was obtained directly from squarephaneic tetraanhydride by facile treatment with hexamethyldisilazane and MeOH. Compared to alkyl-N-substituted SqTI-Rs, SqTI-H exhibited further improved thermal stability and low neutral state solubility in most common organic solvents, owing to computationally demonstrated hydrogen-bonding capabilities emanating from each imide position on SqTI-H. Reversible solid state electrochemical reduction of SqTI-H to the globally aromatic dianion state was also observed at -1.25 V vs. Fc/Fc+, which could be further reduced in two stages. Preliminary testing of SqTI-H in composite electrodes for lithium-organic half cells uncovered imperfect cycling performance, which may be explained by persistent solubility of reduced states, necessitating further optimisation of electrode fabrication procedures to attain maximum performance.
Collapse
Affiliation(s)
- Bowen Ding
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane Shepherd's Bush, London W12 0BZ, UK.
| | - Manik Bhosale
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Troy L R Bennett
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane Shepherd's Bush, London W12 0BZ, UK.
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane Shepherd's Bush, London W12 0BZ, UK.
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
| | - Birgit Esser
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane Shepherd's Bush, London W12 0BZ, UK.
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria.
| |
Collapse
|
2
|
Bennett TLR, Marsh AV, Turner JM, Plasser F, Heeney M, Glöcklhofer F. Functionalisation of conjugated macrocycles with type I and II concealed antiaromaticity via cross-coupling reactions. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2023; 8:713-720. [PMID: 37288099 PMCID: PMC10243434 DOI: 10.1039/d3me00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
Conjugated macrocycles can exhibit concealed antiaromaticity; that is, despite not being antiaromatic, under specific circumstances, they can display properties typically observed in antiaromatic molecules due to their formal macrocyclic 4n π-electron system. Paracyclophanetetraene (PCT) and its derivatives are prime examples of macrocycles exhibiting this behaviour. In redox reactions and upon photoexcitation, they have been shown to behave like antiaromatic molecules (requiring type I and II concealed antiaromaticity, respectively), with such phenomena showing potential for use in battery electrode materials and other electronic applications. However, further exploration of PCTs has been hindered by the lack of halogenated molecular building blocks that would permit their integration into larger conjugated molecules by cross-coupling reactions. Here, we present two dibrominated PCTs, obtained as a mixture of regioisomers from a three-step synthesis, and demonstrate their functionalisation via Suzuki cross-coupling reactions. Optical, electrochemical, and theoretical studies reveal that aryl substituents can subtly tune the properties and behaviour of PCT, showing that this is a viable strategy in further exploring this promising class of materials.
Collapse
Affiliation(s)
- Troy L R Bennett
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub London UK
| | - Adam V Marsh
- KAUST Solar Center (KSC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - James M Turner
- Department of Chemistry, Loughborough University Loughborough LE11 3TU UK
| | - Felix Plasser
- Department of Chemistry, Loughborough University Loughborough LE11 3TU UK
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub London UK
- KAUST Solar Center (KSC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub London UK
| |
Collapse
|
3
|
Eder S, Ding B, Thornton DB, Sammut D, White AJP, Plasser F, Stephens IEL, Heeney M, Mezzavilla S, Glöcklhofer F. Squarephaneic Tetraanhydride: A Conjugated Square-Shaped Cyclophane for the Synthesis of Porous Organic Materials. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202212623. [PMID: 38504923 PMCID: PMC10947162 DOI: 10.1002/ange.202212623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/10/2022]
Abstract
Aromatic carboxylic anhydrides are ubiquitous building blocks in organic materials chemistry and have received considerable attention in the synthesis of organic semiconductors, pigments, and battery electrode materials. Here we extend the family of aromatic carboxylic anhydrides with a unique new member, a conjugated cyclophane with four anhydride groups. The cyclophane is obtained in a three-step synthesis and can be functionalised efficiently, as shown by the conversion into tetraimides and an octacarboxylate. Crystal structures reveal the high degree of porosity achievable with the new building block. Excellent electrochemical properties and reversible reduction to the tetraanions are shown for the imides; NMR and EPR measurements confirm the global aromaticity of the dianions and evidence the global Baird aromaticity of the tetraanions. Considering the short synthesis and unique properties, we expect widespread use of the new building block in the development of organic materials.
Collapse
Affiliation(s)
- Simon Eder
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Bowen Ding
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Daisy B. Thornton
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
- The Faraday InstitutionHarwell Science and Innovation CampusDidcotOX11 0RAUK
| | - Darlene Sammut
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Andrew J. P. White
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Felix Plasser
- Department of ChemistryLoughborough UniversityLoughboroughLE11 3TUUK
| | - Ifan E. L. Stephens
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
- The Faraday InstitutionHarwell Science and Innovation CampusDidcotOX11 0RAUK
| | - Martin Heeney
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Stefano Mezzavilla
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
| | - Florian Glöcklhofer
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| |
Collapse
|
4
|
Eder S, Ding B, Thornton DB, Sammut D, White AJP, Plasser F, Stephens IEL, Heeney M, Mezzavilla S, Glöcklhofer F. Squarephaneic Tetraanhydride: A Conjugated Square-Shaped Cyclophane for the Synthesis of Porous Organic Materials. Angew Chem Int Ed Engl 2022; 61:e202212623. [PMID: 36178733 PMCID: PMC9827958 DOI: 10.1002/anie.202212623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 01/12/2023]
Abstract
Aromatic carboxylic anhydrides are ubiquitous building blocks in organic materials chemistry and have received considerable attention in the synthesis of organic semiconductors, pigments, and battery electrode materials. Here we extend the family of aromatic carboxylic anhydrides with a unique new member, a conjugated cyclophane with four anhydride groups. The cyclophane is obtained in a three-step synthesis and can be functionalised efficiently, as shown by the conversion into tetraimides and an octacarboxylate. Crystal structures reveal the high degree of porosity achievable with the new building block. Excellent electrochemical properties and reversible reduction to the tetraanions are shown for the imides; NMR and EPR measurements confirm the global aromaticity of the dianions and evidence the global Baird aromaticity of the tetraanions. Considering the short synthesis and unique properties, we expect widespread use of the new building block in the development of organic materials.
Collapse
Affiliation(s)
- Simon Eder
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Bowen Ding
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Daisy B. Thornton
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
- The Faraday InstitutionHarwell Science and Innovation CampusDidcotOX11 0RAUK
| | - Darlene Sammut
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Andrew J. P. White
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Felix Plasser
- Department of ChemistryLoughborough UniversityLoughboroughLE11 3TUUK
| | - Ifan E. L. Stephens
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
- The Faraday InstitutionHarwell Science and Innovation CampusDidcotOX11 0RAUK
| | - Martin Heeney
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Stefano Mezzavilla
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
| | - Florian Glöcklhofer
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| |
Collapse
|