1
|
Lajous H, Le Boeuf Fló A, Gordaliza PM, Esteban O, Marques F, Dunet V, Koob M, Bach Cuadra M. A dataset of synthetic, maturation-informed magnetic resonance images of the human fetal brain. Sci Data 2025; 12:602. [PMID: 40210647 PMCID: PMC11986055 DOI: 10.1038/s41597-025-04926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Magnetic resonance imaging (MRI) is a powerful modality for investigating abnormal developmental patterns in utero. However, since it is not the first-line diagnostic tool in this sensitive population, data remain scarce and heterogeneous across scanners and hospitals. To address this, we present a novel dataset of synthetic images representative of real fetal brain MRI. Our dataset comprises 594 two-dimensional, low-resolution series of T2-weighted images corresponding to 78 developing human fetal brains between 20.0 and 34.8 weeks of gestational age. Data are generated using a new version of the Fetal Brain MR Acquisition Numerical phantom (FaBiAN) to account for local white matter heterogeneities throughout maturation. Both healthy and pathological anatomies are simulated with standard clinical settings. Two independent radiologists qualitatively assessed the realism of the simulated images. A quantitative analysis confirms an enhanced fidelity compared to the original version of the software, with further validation through its applicability to fetal brain tissue segmentation. The cohort is publicly available to support the continuous endeavor of developing advanced post-processing methods as well as cutting-edge artificial intelligence models.
Collapse
Affiliation(s)
- Hélène Lajous
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
| | - Andrés Le Boeuf Fló
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Signal Theory and Communications, Universitat Politécnica de Catalunya, BarcelonaTech, Barcelona, Spain
| | - Pedro M Gordaliza
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Oscar Esteban
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ferran Marques
- Department of Signal Theory and Communications, Universitat Politécnica de Catalunya, BarcelonaTech, Barcelona, Spain
| | - Vincent Dunet
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mériam Koob
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| |
Collapse
|
2
|
Payette K, Li HB, de Dumast P, Licandro R, Ji H, Siddiquee MMR, Xu D, Myronenko A, Liu H, Pei Y, Wang L, Peng Y, Xie J, Zhang H, Dong G, Fu H, Wang G, Rieu Z, Kim D, Kim HG, Karimi D, Gholipour A, Torres HR, Oliveira B, Vilaça JL, Lin Y, Avisdris N, Ben-Zvi O, Bashat DB, Fidon L, Aertsen M, Vercauteren T, Sobotka D, Langs G, Alenyà M, Villanueva MI, Camara O, Fadida BS, Joskowicz L, Weibin L, Yi L, Xuesong L, Mazher M, Qayyum A, Puig D, Kebiri H, Zhang Z, Xu X, Wu D, Liao K, Wu Y, Chen J, Xu Y, Zhao L, Vasung L, Menze B, Cuadra MB, Jakab A. Fetal brain tissue annotation and segmentation challenge results. Med Image Anal 2023; 88:102833. [PMID: 37267773 DOI: 10.1016/j.media.2023.102833] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/04/2023]
Abstract
In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.
Collapse
Affiliation(s)
- Kelly Payette
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - Hongwei Bran Li
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland; Department of Informatics, Technical University of Munich, Munich, Germany
| | - Priscille de Dumast
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; CIBM, Center for Biomedical Imaging, Lausanne, Switzerland
| | - Roxane Licandro
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States; Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab (CIR), Medical University of Vienna, Vienna, Austria
| | - Hui Ji
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | - Hao Liu
- Shanghai Jiaotong University, China
| | | | | | - Ying Peng
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
| | - Juanying Xie
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
| | - Huiquan Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
| | - Guiming Dong
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Fu
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Guotai Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - ZunHyan Rieu
- Research Institute, NEUROPHET Inc., Seoul 06247, South Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc., Seoul 06247, South Korea
| | - Hyun Gi Kim
- Department of Radiology, The Catholic University of Korea, Eunpyeong St. Mary's Hospital, Seoul 06247, South Korea
| | - Davood Karimi
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ali Gholipour
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Helena R Torres
- Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga Guimarães, Portugal
| | - Bruno Oliveira
- Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga Guimarães, Portugal
| | - João L Vilaça
- 2Ai - School of Technology, IPCA, Barcelos, Portugal
| | - Yang Lin
- Department of Computer Science, Hong Kong University of Science and Technology, China
| | - Netanell Avisdris
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel; Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Ori Ben-Zvi
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Dafna Ben Bashat
- Sagol School of Neuroscience, Tel Aviv University, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Lucas Fidon
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, United Kingdom
| | - Michael Aertsen
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Tom Vercauteren
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, United Kingdom
| | - Daniel Sobotka
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Mireia Alenyà
- BCN-MedTech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Inmaculada Villanueva
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Oscar Camara
- BCN-MedTech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Bella Specktor Fadida
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Leo Joskowicz
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Liao Weibin
- School of Computer Science, Beijing Institute of Technology, China
| | - Lv Yi
- School of Computer Science, Beijing Institute of Technology, China
| | - Li Xuesong
- School of Computer Science, Beijing Institute of Technology, China
| | - Moona Mazher
- Department of Computer Engineering and Mathematics, University Rovira i Virgili,Spain
| | | | - Domenec Puig
- Department of Computer Engineering and Mathematics, University Rovira i Virgili,Spain
| | - Hamza Kebiri
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; CIBM, Center for Biomedical Imaging, Lausanne, Switzerland
| | - Zelin Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | - Xinyi Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | | | - Yixuan Wu
- Zhejiang University, Hangzhou, China
| | | | - Yunzhi Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | - Lana Vasung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, United States; Department of Pediatrics, Harvard Medical School, United States
| | - Bjoern Menze
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; CIBM, Center for Biomedical Imaging, Lausanne, Switzerland
| | - Andras Jakab
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; University Research Priority Project Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zürich, Zurich, Switzerland
| |
Collapse
|
4
|
Deprest T, Fidon L, De Keyzer F, Ebner M, Deprest J, Demaerel P, De Catte L, Vercauteren T, Ourselin S, Dymarkowski S, Aertsen M. Application of Automatic Segmentation on Super-Resolution Reconstruction MR Images of the Abnormal Fetal Brain. AJNR Am J Neuroradiol 2023; 44:486-491. [PMID: 36863845 PMCID: PMC10084897 DOI: 10.3174/ajnr.a7808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND AND PURPOSE Fetal brain MR imaging is clinically used to characterize fetal brain abnormalities. Recently, algorithms have been proposed to reconstruct high-resolution 3D fetal brain volumes from 2D slices. By means of these reconstructions, convolutional neural networks have been developed for automatic image segmentation to avoid labor-intensive manual annotations, usually trained on data of normal fetal brains. Herein, we tested the performance of an algorithm specifically developed for segmentation of abnormal fetal brains. MATERIALS AND METHODS This was a single-center retrospective study on MR images of 16 fetuses with severe CNS anomalies (gestation, 21-39 weeks). T2-weighted 2D slices were converted to 3D volumes using a super-resolution reconstruction algorithm. The acquired volumetric data were then processed by a novel convolutional neural network to perform segmentations of white matter and the ventricular system and cerebellum. These were compared with manual segmentation using the Dice coefficient, Hausdorff distance (95th percentile), and volume difference. Using interquartile ranges, we identified outliers of these metrics and further analyzed them in detail. RESULTS The mean Dice coefficient was 96.2%, 93.7%, and 94.7% for white matter and the ventricular system and cerebellum, respectively. The Hausdorff distance was 1.1, 2.3, and 1.6 mm, respectively. The volume difference was 1.6, 1.4, and 0.3 mL, respectively. Of the 126 measurements, there were 16 outliers among 5 fetuses, discussed on a case-by-case basis. CONCLUSIONS Our novel segmentation algorithm obtained excellent results on MR images of fetuses with severe brain abnormalities. Analysis of the outliers shows the need to include pathologies underrepresented in the current data set. Quality control to prevent occasional errors is still needed.
Collapse
Affiliation(s)
- T Deprest
- From the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.)
| | - L Fidon
- School of Biomedical Engineering and Imaging Sciences (L.F., M.E., T.V., S.O.), King's College London, London, UK
| | - F De Keyzer
- From the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.)
| | - M Ebner
- School of Biomedical Engineering and Imaging Sciences (L.F., M.E., T.V., S.O.), King's College London, London, UK
- Department of Medical Physics and Biomedical Engineering (M.E., T.V.), University College London, London, UK
| | - J Deprest
- Gynaecology and Obstetrics (J.D., L.D.C., T.V.), University Hospitals Leuven, Belgium
- Institute for Women's Health (J.D.)
| | - P Demaerel
- From the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.)
| | - L De Catte
- Gynaecology and Obstetrics (J.D., L.D.C., T.V.), University Hospitals Leuven, Belgium
| | - T Vercauteren
- Gynaecology and Obstetrics (J.D., L.D.C., T.V.), University Hospitals Leuven, Belgium
- School of Biomedical Engineering and Imaging Sciences (L.F., M.E., T.V., S.O.), King's College London, London, UK
- Department of Medical Physics and Biomedical Engineering (M.E., T.V.), University College London, London, UK
| | - S Ourselin
- School of Biomedical Engineering and Imaging Sciences (L.F., M.E., T.V., S.O.), King's College London, London, UK
| | - S Dymarkowski
- From the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.)
| | - M Aertsen
- From the Department of Radiology (T.D., F.D.K., P.D., S.D., M.A.)
| |
Collapse
|
5
|
Uus AU, van Poppel MPM, Steinweg JK, Grigorescu I, Ramirez Gilliland P, Roberts TA, Egloff Collado A, Rutherford MA, Hajnal JV, Lloyd DFA, Pushparajah K, Deprez M. 3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation. J Cardiovasc Magn Reson 2022; 24:71. [PMID: 36517850 PMCID: PMC9753334 DOI: 10.1186/s12968-022-00902-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Image-domain motion correction of black-blood contrast T2-weighted fetal cardiovascular magnetic resonance imaging (CMR) using slice-to-volume registration (SVR) provides high-resolution three-dimensional (3D) images of the fetal heart providing excellent 3D visualisation of vascular anomalies [1]. However, 3D segmentation of these datasets, important for both clinical reporting and the application of advanced analysis techniques is currently a time-consuming process requiring manual input with potential for inter-user variability. METHODS In this work, we present novel 3D fetal CMR population-averaged atlases of normal and abnormal fetal cardiovascular anatomy. The atlases are created using motion-corrected 3D reconstructed volumes of 86 third trimester fetuses (gestational age range 29-34 weeks) including: 28 healthy controls, 20 cases with postnatally confirmed neonatal coarctation of the aorta (CoA) and 38 vascular rings (21 right aortic arch (RAA), 17 double aortic arch (DAA)). We used only high image quality datasets with isolated anomalies and without any other deviations in the cardiovascular anatomy.In addition, we implemented and evaluated atlas-guided registration and deep learning (UNETR) methods for automated 3D multi-label segmentation of fetal cardiac vessels. We used images from CoA, RAA and DAA cohorts including: 42 cases for training (14 from each cohort), 3 for validation and 6 for testing. In addition, the potential limitations of the network were investigated on unseen datasets including 3 early gestational age (22 weeks) and 3 low SNR cases. RESULTS We created four atlases representing the average anatomy of the normal fetal heart, postnatally confirmed neonatal CoA, RAA and DAA. Visual inspection was undertaken to verify expected anatomy per subgroup. The results of the multi-label cardiac vessel UNETR segmentation showed 100[Formula: see text] per-vessel detection rate for both normal and abnormal aortic arch anatomy. CONCLUSIONS This work introduces the first set of 3D black-blood T2-weighted CMR atlases of normal and abnormal fetal cardiovascular anatomy including detailed segmentation of the major cardiovascular structures. Additionally, we demonstrated the general feasibility of using deep learning for multi-label vessel segmentation of 3D fetal CMR images.
Collapse
Affiliation(s)
- Alena U Uus
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| | - Milou P M van Poppel
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, UK
| | - Johannes K Steinweg
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Centre for the Developing Brain, King's College London, London, UK
| | - Irina Grigorescu
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | | | - Thomas A Roberts
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Clinical Scientific Computing, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | - Joseph V Hajnal
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Centre for the Developing Brain, King's College London, London, UK
| | - David F A Lloyd
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, UK
| | - Kuberan Pushparajah
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, UK
| | - Maria Deprez
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|