1
|
Ahmed YW, Alemu BA, Bekele SA, Gizaw ST, Zerihun MF, Wabalo EK, Teklemariam MD, Mihrete TK, Hanurry EY, Amogne TG, Gebrehiwot AD, Berga TN, Haile EA, Edo DO, Alemu BD. Epigenetic tumor heterogeneity in the era of single-cell profiling with nanopore sequencing. Clin Epigenetics 2022; 14:107. [PMID: 36030244 PMCID: PMC9419648 DOI: 10.1186/s13148-022-01323-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a simple sequence at long reads and is expected to be used soon at the bedside or doctor's office. Here, we review the advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia.
| | - Berhan Ababaw Alemu
- Department of Medical Biochemistry, School of Medicine, St. Paul's Hospital, Millennium Medical College, Addis Ababa, Ethiopia
| | - Sisay Addisu Bekele
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Muluken Fekadie Zerihun
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endriyas Kelta Wabalo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Maria Degef Teklemariam
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu Mihrete
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endris Yibru Hanurry
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tensae Gebru Amogne
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Assaye Desalegne Gebrehiwot
- Department of Medical Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamirat Nida Berga
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Ebsitu Abate Haile
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Dessiet Oma Edo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Bizuwork Derebew Alemu
- Department of Statistics, College of Natural and Computational Sciences, Mizan Tepi University, Tepi, Ethiopia
| |
Collapse
|
2
|
Karan S, Choudhury D, Dixit A. Enhanced expression of recombinant proteins in Escherichia coli by co-expression with Vibrio parahaemolyticus CsgG, a pore-forming protein of the curli biogenesis pathway. J Appl Microbiol 2020; 130:1611-1629. [PMID: 33025668 DOI: 10.1111/jam.14886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022]
Abstract
AIM To test whether engineered nanopores on the outer membrane (OM) of Escherichia coli can increase expression of heterologous proteins by making additional nutrients available to the host. METHODS AND RESULTS Outer membrane nanopores were generated by expressing recombinant Vibrio parahaemolyticus CsgG (rVpCsgG), which spontaneously assembles into a pore-forming channel on the OM, allowing spontaneous diffusion of small chemical entities from the exterior. Protein expression was probed using a reporter protein, sfGFP, expressed on a second compatible plasmid. OM pore formation was shown by acquired erythromycin sensitivity in cells transformed with rVpCsgG, influx of propidium iodide as well as by surface localization of recombinant CsgG by immunogold-labeled transmission electron microscopy. Expression of recombinant CsgG showed increased growth and also enhanced expression of sfGFP in minimal medium and is due to both enhanced transcription as well as translation. Similar enhancement of expression was also observed for a number of different proteins of different origin, sizes and nature. CONCLUSIONS Our findings clearly demonstrate that engineered nanopores on the OM of E. coli enhance expression of different heterologous proteins in minimal medium. SIGNIFICANCE AND IMPACT OF THE STUDY Vibrio parahaemolyticus CsgG β-nanopore mediated co-expression strategy to improve recombinant protein expression is fully compatible with other methods of protein expression enhancement, and therefore can be a useful tool in biotechnology particularly for whole-cell bio-transformations for production of secondary metabolite.
Collapse
Affiliation(s)
- S Karan
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - D Choudhury
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - A Dixit
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Ramírez-Carreto S, Miranda-Zaragoza B, Rodríguez-Almazán C. Actinoporins: From the Structure and Function to the Generation of Biotechnological and Therapeutic Tools. Biomolecules 2020; 10:E539. [PMID: 32252469 PMCID: PMC7226409 DOI: 10.3390/biom10040539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/22/2022] Open
Abstract
Actinoporins (APs) are a family of pore-forming toxins (PFTs) from sea anemones. These biomolecules exhibit the ability to exist as soluble monomers within an aqueous medium or as constitutively open oligomers in biological membranes. Through their conformational plasticity, actinoporins are considered good candidate molecules to be included for the rational design of molecular tools, such as immunotoxins directed against tumor cells and stochastic biosensors based on nanopores to analyze unique DNA or protein molecules. Additionally, the ability of these proteins to bind to sphingomyelin (SM) facilitates their use for the design of molecular probes to identify SM in the cells. The immunomodulatory activity of actinoporins in liposomal formulations for vaccine development has also been evaluated. In this review, we describe the potential of actinoporins for use in the development of molecular tools that could be used for possible medical and biotechnological applications.
Collapse
Affiliation(s)
| | | | - Claudia Rodríguez-Almazán
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico; (S.R.-C.); (B.M.-Z.)
| |
Collapse
|
4
|
Adir O, Poley M, Chen G, Froim S, Krinsky N, Shklover J, Shainsky-Roitman J, Lammers T, Schroeder A. Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901989. [PMID: 31286573 PMCID: PMC7124889 DOI: 10.1002/adma.201901989] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/17/2019] [Indexed: 05/13/2023]
Abstract
Artificial intelligence (AI) and nanotechnology are two fields that are instrumental in realizing the goal of precision medicine-tailoring the best treatment for each cancer patient. Recent conversion between these two fields is enabling better patient data acquisition and improved design of nanomaterials for precision cancer medicine. Diagnostic nanomaterials are used to assemble a patient-specific disease profile, which is then leveraged, through a set of therapeutic nanotechnologies, to improve the treatment outcome. However, high intratumor and interpatient heterogeneities make the rational design of diagnostic and therapeutic platforms, and analysis of their output, extremely difficult. Integration of AI approaches can bridge this gap, using pattern analysis and classification algorithms for improved diagnostic and therapeutic accuracy. Nanomedicine design also benefits from the application of AI, by optimizing material properties according to predicted interactions with the target drug, biological fluids, immune system, vasculature, and cell membranes, all affecting therapeutic efficacy. Here, fundamental concepts in AI are described and the contributions and promise of nanotechnology coupled with AI to the future of precision cancer medicine are reviewed.
Collapse
Affiliation(s)
- Omer Adir
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Maria Poley
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Gal Chen
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sahar Froim
- Department of Physical Electronics, School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nitzan Krinsky
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Jeny Shklover
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Janna Shainsky-Roitman
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, 52074, Germany
| | - Avi Schroeder
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
5
|
Zhou W, Qiu H, Guo Y, Guo W. Molecular Insights into Distinct Detection Properties of α-Hemolysin, MspA, CsgG, and Aerolysin Nanopore Sensors. J Phys Chem B 2020; 124:1611-1618. [PMID: 32027510 DOI: 10.1021/acs.jpcb.9b10702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein nanopores have been widely used as single-molecule sensors for the detection and characterization of biological polymers such as DNA, RNA, and polypeptides. A variety of protein nanopores with various geometries have been exploited for this purpose, which usually exhibit distinct sensing capabilities, but the underlying molecular mechanism remains elusive. Here, we systematically characterize the molecular transport properties of four widely studied protein nanopores, α-hemolysin, MspA, CsgG, and aerolysin, by extensive molecular dynamics simulations. It is found that a sudden drop in electrostatic potentials occurs at the sole constriction in MspA and CsgG nanopores in contrast to the gradual potential change inside α-hemolysin and aerolysin pores, indicating the crucial role of pore geometry in ionic and molecular transport. We further demonstrate that these protein nanopores exhibit open-pore currents and ssDNA-induced current blockades both in the order MspA > α-hemolysin > CsgG > aerolysin, but an equivalent blockade percentage around 80%. In addition, the substitution of key amino acids at the pore constriction, especially by charged ones, provides an efficient way to modulate the pore electrostatic potential and ionic current. This work sheds new light on the search for high-performance nanopores, engineering of protein nanopores, and design of bioinspired solid-state nanopores.
Collapse
Affiliation(s)
- Wanqi Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yufeng Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
6
|
Soneson C, Yao Y, Bratus-Neuenschwander A, Patrignani A, Robinson MD, Hussain S. A comprehensive examination of Nanopore native RNA sequencing for characterization of complex transcriptomes. Nat Commun 2019; 10:3359. [PMID: 31366910 PMCID: PMC6668388 DOI: 10.1038/s41467-019-11272-z] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/04/2019] [Indexed: 11/29/2022] Open
Abstract
A platform for highly parallel direct sequencing of native RNA strands was recently described by Oxford Nanopore Technologies, but despite initial efforts it remains crucial to further investigate the technology for quantification of complex transcriptomes. Here we undertake native RNA sequencing of polyA + RNA from two human cell lines, analysing ~5.2 million aligned native RNA reads. To enable informative comparisons, we also perform relevant ONT direct cDNA- and Illumina-sequencing. We find that while native RNA sequencing does enable some of the anticipated advantages, key unexpected aspects currently hamper its performance, most notably the quite frequent inability to obtain full-length transcripts from single reads, as well as difficulties to unambiguously infer their true transcript of origin. While characterising issues that need to be addressed when investigating more complex transcriptomes, our study highlights that with some defined improvements, native RNA sequencing could be an important addition to the mammalian transcriptomics toolbox.
Collapse
Affiliation(s)
- Charlotte Soneson
- Institute of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland.
- SIB Swiss Institute of Bioinformatics, 8057, Zurich, Switzerland.
- Friedrich Miescher Institute for Biomedical Research and SIB Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Yao Yao
- Institute of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, 8057, Zurich, Switzerland
| | | | - Andrea Patrignani
- Functional Genomics Centre Zurich, ETHZ/University of Zurich, 8057, Zurich, Switzerland
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland.
- SIB Swiss Institute of Bioinformatics, 8057, Zurich, Switzerland.
| | - Shobbir Hussain
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
7
|
Malla MA, Dubey A, Kumar A, Yadav S, Hashem A, Abd_Allah EF. Exploring the Human Microbiome: The Potential Future Role of Next-Generation Sequencing in Disease Diagnosis and Treatment. Front Immunol 2019; 9:2868. [PMID: 30666248 PMCID: PMC6330296 DOI: 10.3389/fimmu.2018.02868] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction between the human microbiome and immune system has an effect on several human metabolic functions and impacts our well-being. Additionally, the interaction between humans and microbes can also play a key role in determining the wellness or disease status of the human body. Dysbiosis is related to a plethora of diseases, including skin, inflammatory, metabolic, and neurological disorders. A better understanding of the host-microbe interaction is essential for determining the diagnosis and appropriate treatment of these ailments. The significance of the microbiome on host health has led to the emergence of new therapeutic approaches focused on the prescribed manipulation of the host microbiome, either by removing harmful taxa or reinstating missing beneficial taxa and the functional roles they perform. Culturing large numbers of microbial taxa in the laboratory is problematic at best, if not impossible. Consequently, this makes it very difficult to comprehensively catalog the individual members comprising a specific microbiome, as well as understanding how microbial communities function and influence host-pathogen interactions. Recent advances in sequencing technologies and computational tools have allowed an increasing number of metagenomic studies to be performed. These studies have provided key insights into the human microbiome and a host of other microbial communities in other environments. In the present review, the role of the microbiome as a therapeutic agent and its significance in human health and disease is discussed. Advances in high-throughput sequencing technologies for surveying host-microbe interactions are also discussed. Additionally, the correlation between the composition of the microbiome and infectious diseases as described in previously reported studies is covered as well. Lastly, recent advances in state-of-the-art bioinformatics software, workflows, and applications for analysing metagenomic data are summarized.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour Central University, Sagar, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour Central University, Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour Central University, Sagar, India
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour Central University, Sagar, India
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Rouse SL, Stylianou F, Wu HYG, Berry JL, Sewell L, Morgan RML, Sauerwein AC, Matthews S. The FapF Amyloid Secretion Transporter Possesses an Atypical Asymmetric Coiled Coil. J Mol Biol 2018; 430:3863-3871. [PMID: 29886016 PMCID: PMC6173795 DOI: 10.1016/j.jmb.2018.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Gram-negative bacteria possess specialized biogenesis machineries that facilitate the export of amyloid subunits, the fibers of which are key components of their biofilm matrix. The secretion of bacterial functional amyloid requires a specialized outer-membrane protein channel through which unfolded amyloid substrates are translocated. We previously reported the crystal structure of the membrane-spanning domain of the amyloid subunit transporter FapF from Pseudomonas. However, the structure of the periplasmic domain, which is essential for amyloid transport, is yet to be determined. Here, we present the crystal structure of the N-terminal periplasmic domain at 1.8-Å resolution. This domain forms a novel asymmetric trimeric coiled coil that possesses a single buried tyrosine residue as well as an extensive hydrogen-bonding network within a glutamine layer. This new structural insight allows us to understand this newly described functional amyloid secretion system in greater detail.
Collapse
Affiliation(s)
- Sarah L Rouse
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Fisentzos Stylianou
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - H Y Grace Wu
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Jamie-Lee Berry
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Lee Sewell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - R Marc L Morgan
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Andrea C Sauerwein
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Steve Matthews
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
9
|
Abstract
Real-time sequencing of short DNA reads has a wide variety of clinical and research applications including screening for mutations, target sequences and aneuploidy. We recently demonstrated that MinION, a nanopore-based DNA sequencing device the size of a USB drive, could be used for short-read DNA sequencing. In this study, an ultra-rapid multiplex library preparation and sequencing method for the MinION is presented and applied to accurately test normal diploid and aneuploidy samples’ genomic DNA in under three hours, including library preparation and sequencing. This novel method shows great promise as a clinical diagnostic test for applications requiring rapid short-read DNA sequencing.
Collapse
|
10
|
Hussain S. Native RNA-Sequencing Throws its Hat into the Transcriptomics Ring. Trends Biochem Sci 2018; 43:225-227. [DOI: 10.1016/j.tibs.2018.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/11/2018] [Accepted: 02/15/2018] [Indexed: 10/17/2022]
|
11
|
Quainoo S, Coolen JPM, van Hijum SAFT, Huynen MA, Melchers WJG, van Schaik W, Wertheim HFL. Whole-Genome Sequencing of Bacterial Pathogens: the Future of Nosocomial Outbreak Analysis. Clin Microbiol Rev 2017; 30:1015-1063. [PMID: 28855266 PMCID: PMC5608882 DOI: 10.1128/cmr.00016-17] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Outbreaks of multidrug-resistant bacteria present a frequent threat to vulnerable patient populations in hospitals around the world. Intensive care unit (ICU) patients are particularly susceptible to nosocomial infections due to indwelling devices such as intravascular catheters, drains, and intratracheal tubes for mechanical ventilation. The increased vulnerability of infected ICU patients demonstrates the importance of effective outbreak management protocols to be in place. Understanding the transmission of pathogens via genotyping methods is an important tool for outbreak management. Recently, whole-genome sequencing (WGS) of pathogens has become more accessible and affordable as a tool for genotyping. Analysis of the entire pathogen genome via WGS could provide unprecedented resolution in discriminating even highly related lineages of bacteria and revolutionize outbreak analysis in hospitals. Nevertheless, clinicians have long been hesitant to implement WGS in outbreak analyses due to the expensive and cumbersome nature of early sequencing platforms. Recent improvements in sequencing technologies and analysis tools have rapidly increased the output and analysis speed as well as reduced the overall costs of WGS. In this review, we assess the feasibility of WGS technologies and bioinformatics analysis tools for nosocomial outbreak analyses and provide a comparison to conventional outbreak analysis workflows. Moreover, we review advantages and limitations of sequencing technologies and analysis tools and present a real-world example of the implementation of WGS for antimicrobial resistance analysis. We aimed to provide health care professionals with a guide to WGS outbreak analysis that highlights its benefits for hospitals and assists in the transition from conventional to WGS-based outbreak analysis.
Collapse
Affiliation(s)
- Scott Quainoo
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Jordy P M Coolen
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sacha A F T van Hijum
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
- NIZO, Ede, The Netherlands
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Heiman F L Wertheim
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|