1
|
Smith KA, Boyce N, Chevance A, Chiocchia V, Correll CU, Donoghue K, Ghodke N, Kambeu T, Malhi GS, Macleod M, Milligan L, Morgan J, Potts J, Robinson ESJ, Siafis S, Sommer IEC, Voelkl B, Salanti G, Cipriani A, Higgins JPT. Triangulating evidence from the GALENOS living systematic review on trace amine-associated receptor 1 (TAAR1) agonists in psychosis. Br J Psychiatry 2025; 226:162-170. [PMID: 39710623 DOI: 10.1192/bjp.2024.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
BACKGROUND Trace amine-associated receptor 1 (TAAR1) agonists offer a new approach, but there is uncertainty regarding their effects, exact mechanism of action and potential role in treating psychosis. AIMS To evaluate the available evidence on TAAR1 agonists in psychosis, using triangulation of the output of living systematic reviews (LSRs) of animal and human studies, and provide recommendations for future research prioritisation. METHOD This study is part of GALENOS (Global Alliance for Living Evidence on aNxiety, depressiOn and pSychosis). In the triangulation process, a multidisciplinary group of experts, including those with lived experience, met and appraised the first co-produced living systematic reviews from GALENOS, on TAAR1 agonists. RESULTS The animal data suggested a potential antipsychotic effect, as TAAR1 agonists reduced locomotor activity induced by pro-psychotic drug treatment. Human studies showed few differences for ulotaront and ralmitaront compared with placebo in improving overall symptoms in adults with acute schizophrenia (four studies, n = 1291 participants, standardised mean difference (SMD) 0.15, 95% CI -0.05 to 0.34). Large placebo responses were seen in ulotaront phase three trials. Ralmitaront was less efficacious than risperidone (one study, n = 156 participants, SMD = -0.53, 95% CI -0.86 to -0.20). The side-effect profile of TAAR1 agonists was favourable compared with existing antipsychotics. Priorities for future studies included (a) using different animal models of psychosis with greater translational validity; (b) animal and human studies with wider outcomes including cognitive and affective symptoms and (c) mechanistic studies and investigations of other potential applications, such as adjunctive treatments and long-term outcomes. Recommendations for future iterations of the LSRs included (a) meta-analysis of individual human participant data, (b) including studies that used different methodologies and (c) assessing other disorders and symptoms. CONCLUSIONS This co-produced, international triangulation examined the available evidence and developed recommendations for future research and clinical applications for TAAR1 agonists in psychosis. Broader challenges included difficulties in assessing the risk of bias, reproducibility, translation and interpretability of animal models to clinical outcomes, and a lack of individual and clinical characteristics in the human data. The research will inform a separate, independent prioritisation process, led by lived experience experts, to prioritise directions for future research.
Collapse
Affiliation(s)
- Katharine A Smith
- Department of Psychiatry, University of Oxford, UK; NIHR Oxford Health Clinical Research Facility, Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK; and Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | | | - Astrid Chevance
- INSERM UMR 1153, Center for Research in Epidemiology and Statistics (CRESS), INRAE, Inserm, Université de Paris Cité and Université Sorbonne Paris Nord, France; and Centre d'Épidémiologie Clinique, Hôpital Hôtel Dieu, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Virginia Chiocchia
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Christoph U Correll
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, New York, USA; Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, USA; Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, New York, USA; and Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Germany
| | | | - Nikita Ghodke
- Department of Communicative Sciences and Disorders, New York University, USA
| | - Tatenda Kambeu
- Research Department, Ndinewe Foundation, Harare, Zimbabwe
| | - Gin S Malhi
- Department of Psychiatry, University of Oxford, UK; Academic Department of Psychiatry, Kolling Institute, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Australia; and CADE Clinic and Mood-T, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, Australia
| | - Malcolm Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Lea Milligan
- (deceased), MQ Mental Health Research, London, UK
| | | | - Jennifer Potts
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Spyridon Siafis
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University of Munich, Germany; and German Center for Mental Health (DZPG), partner site Munich/Augsburg, Germany
| | - Iris E C Sommer
- Department of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Georgia Salanti
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Andrea Cipriani
- Department of Psychiatry, University of Oxford, UK; NIHR Oxford Health Clinical Research Facility, Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK; and Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | - Julian P T Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, UK
| |
Collapse
|
2
|
Siafis S, Nomura N, Schneider-Thoma J, Bighelli I, Bannach-Brown A, Ramage FJ, Tinsdeall F, Mantas I, Jauhar S, Natesan S, Vernon AC, de Bartolomeis A, Hölter SM, Drude NI, Tölch U, Hansen WP, Chiocchia V, Howes OD, Priller J, Macleod MR, Salanti G, Leucht S. Muscarinic receptor agonists and positive allosteric modulators in animal models of psychosis: protocol for a systematic review and meta-analysis. F1000Res 2025; 13:1017. [PMID: 39844929 PMCID: PMC11751611 DOI: 10.12688/f1000research.155356.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Background Muscarinic receptor agonism and positive allosteric modulation is a promising mechanism of action for treating psychosis, not present in most D2R-blocking antipsychotics. Xanomeline, an M1/M4-preferring agonist, has shown efficacy in late-stage clinical trials, with more compounds being investigated. Therefore, we aim to synthesize evidence on the preclinical efficacy of muscarinic receptor agonists and positive allosteric modulators in animal models of psychosis to provide unique insights and evidence-based information to guide drug development. Methods We plan a systematic review and meta-analysis of in vivo animal studies comparing muscarinic receptor agonists or positive allosteric modulators with control conditions and existing D2R-blocking antipsychotics in animals subjected to any method that induces behavioural changes of relevance for psychosis. We will identify eligible studies by searching multiple electronic databases. At least two independent reviewers will conduct the study selection and data extraction using prespecified forms and assess the risk of bias with the SYRCLE's tool. Our primary outcomes include locomotor activity and prepulse inhibition measured with standardized mean differences. We will examine other behavioural readouts of relevance for psychosis as secondary outcomes, such as social interaction and cognitive function. We will synthesize the data using multi-level meta-analysis with a predefined random-effects structure, considering the non-independence of the data. In meta-regressions we will explore potential sources of heterogeneity from a predefined list of characteristics of the animal population, model, and intervention. We will assess the confidence in the evidence considering a self-developed instrument thatconsiders the internal and external validity of the evidence. Protocol registration PROSPERO-ID: CRD42024520914.
Collapse
Affiliation(s)
- Spyridon Siafis
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Technical University of Munich, School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Nobuyuki Nomura
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Technical University of Munich, School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Johannes Schneider-Thoma
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Technical University of Munich, School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Irene Bighelli
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Technical University of Munich, School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Alexandra Bannach-Brown
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Fiona J. Ramage
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Francesca Tinsdeall
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sameer Jauhar
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Sridhar Natesan
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Anthony C. Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Sabine M. Hölter
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Natascha I. Drude
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf Tölch
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Virginia Chiocchia
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Oliver D. Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Josef Priller
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Technical University of Munich, School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin and DZNE, Berlin, Germany
| | - Malcolm R. Macleod
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Georgia Salanti
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Stefan Leucht
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Technical University of Munich, School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| |
Collapse
|
3
|
Shajan B, Bastiampillai T, Hellyer SD, Nair PC. Unlocking the secrets of trace amine-associated receptor 1 agonists: new horizon in neuropsychiatric treatment. Front Psychiatry 2024; 15:1464550. [PMID: 39553890 PMCID: PMC11565220 DOI: 10.3389/fpsyt.2024.1464550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/07/2024] [Indexed: 11/19/2024] Open
Abstract
For over seven decades, dopamine receptor 2 (D2 receptor) antagonists remained the mainstay treatment for neuropsychiatric disorders. Although it is effective for treating hyperdopaminergic symptoms, it is often ineffective for treating negative and cognitive deficits. Trace amine-associated receptor 1 (TAAR1) is a novel, pharmacological target in the treatment of schizophrenia and other neuropsychiatric conditions. Several TAAR1 agonists are currently being developed and are in various stages of clinical and preclinical development. Previous efforts to identify TAAR1 agonists have been hampered by challenges in pharmacological characterisation, the absence of experimentally determined structures, and species-specific preferences in ligand binding and recognition. Further, poor insights into the functional selectivity of the receptor led to the characterisation of ligands with analogous signalling mechanisms. Such approaches limited the understanding of divergent receptor signalling and their potential clinical utility. Recent cryogenic electron microscopic (cryo-EM) structures of human and mouse TAAR1 (hTAAR1 and mTAAR1, respectively) in complex with agonists and G proteins have revealed detailed atomic insights into the binding pockets, binding interactions and binding modes of several agonists including endogenous trace amines (β-phenylethylamine, 3-Iodothyronamine), psychostimulants (amphetamine, methamphetamine), clinical compounds (ulotaront, ralmitaront) and repurposed drugs (fenoldopam). The in vitro screening of drug libraries has also led to the discovery of novel TAAR1 agonists (asenapine, guanabenz, guanfacine) which can be used in clinical trials or further developed to treat different neuropsychiatric conditions. Furthermore, an understanding of unappreciated signalling mechanisms (Gq, Gs/Gq) by TAAR1 agonists has come to light with the discovery of selective compounds to treat schizophrenia-like phenotypes. In this review, we discuss the emergence of structure-based approaches in the discovery of novel TAAR1 agonists through drug repurposing strategies and structure-guided designs. Additionally, we discuss the functional selectivity of TAAR1 signalling, which provides important clues for developing disorder-specific compounds.
Collapse
Affiliation(s)
- Britto Shajan
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Tarun Bastiampillai
- Department of Psychiatry, Monash University, Parkville, Melbourne, VIC, Australia
- Flinders Health and Medical Research Institute (FHMRI) College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Shane D. Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Pramod C. Nair
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute (FHMRI) College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
4
|
Leucht S, Priller J, Davis JM. Antipsychotic Drugs: A Concise Review of History, Classification, Indications, Mechanism, Efficacy, Side Effects, Dosing, and Clinical Application. Am J Psychiatry 2024; 181:865-878. [PMID: 39350614 DOI: 10.1176/appi.ajp.20240738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The introduction of the first antipsychotic drug, chlorpromazine, was a milestone for psychiatry. The authors review the history, classification, indications, mechanism, efficacy, side effects, dosing, drug initiation, switching, and other practical issues and questions related to antipsychotics. Classifications such as first-generation/typical versus second-generation/atypical antipsychotics are neither valid nor useful; these agents should be described according to the Neuroscience-based Nomenclature (NbN). Antipsychotic drugs are not specific for treating schizophrenia. They reduce psychosis regardless of the underlying diagnosis, and they go beyond nonspecific sedation. All currently available antipsychotic drugs are dopamine blockers or dopamine partial agonists. In schizophrenia, effect sizes for relapse prevention are larger than for acute treatment. A major unresolved problem is the implausible increase in placebo response in antipsychotic drug trials over the decades. Differences in side effects, which can be objectively measured, such as weight gain, are less equivocal than differences in rating-scale-measured (subjective) efficacy. The criteria for choosing among antipsychotics are mainly pragmatic and include factors such as available formulations, metabolism, half-life, efficacy, and side effects in previous illness episodes. Plasma levels help to detect nonadherence, and once-daily dosing at night (which is possible with many antipsychotics) and long-acting injectable formulations are useful when adherence is a problem. Dose-response curves for both acute treatment and relapse prevention follow a hyperbolic pattern, with maximally efficacious average dosages for schizophrenia of around 5 mg/day risperidone equivalents. Computer apps facilitating the choice between drugs are available. Future drug development should include pharmacogenetics and focus on drugs for specific aspects of psychosis.
Collapse
Affiliation(s)
- Stefan Leucht
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Munich (Leucht, Priller); German Center for Mental Health, Munich (Leucht, Priller); Neuropsychiatry, Charité-Universitätsmedizin Berlin, and German Center for Neurodegenerative Disorders, Berlin (Priller); University of Edinburgh and UK Dementia Research Institute, Edinburgh (Priller); Department of Psychiatry, University of Illinois at Chicago (Davis)
| | - Josef Priller
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Munich (Leucht, Priller); German Center for Mental Health, Munich (Leucht, Priller); Neuropsychiatry, Charité-Universitätsmedizin Berlin, and German Center for Neurodegenerative Disorders, Berlin (Priller); University of Edinburgh and UK Dementia Research Institute, Edinburgh (Priller); Department of Psychiatry, University of Illinois at Chicago (Davis)
| | - John M Davis
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Munich (Leucht, Priller); German Center for Mental Health, Munich (Leucht, Priller); Neuropsychiatry, Charité-Universitätsmedizin Berlin, and German Center for Neurodegenerative Disorders, Berlin (Priller); University of Edinburgh and UK Dementia Research Institute, Edinburgh (Priller); Department of Psychiatry, University of Illinois at Chicago (Davis)
| |
Collapse
|
5
|
Siafis S, Chiocchia V, Macleod MR, Austin C, Homiar A, Tinsdeall F, Friedrich C, Ramage FJ, Kennett J, Nomura N, Maksym O, Rutigliano G, Vano LJ, McCutcheon RA, Gilbert D, Ostinelli EG, Stansfield C, Dehdarirad H, Juma DO, Wright S, Simple O, Elugbadebo O, Tonia T, Mantas I, Howes OD, Furukawa TA, Milligan L, Moreno C, Elliott JH, Hastings J, Thomas J, Michie S, Sena ES, Seedat S, Egger M, Potts J, Cipriani A, Salanti G, Leucht S. Trace amine-associated receptor 1 (TAAR1) agonism for psychosis: a living systematic review and meta-analysis of human and non-human data. Wellcome Open Res 2024; 9:182. [PMID: 39036710 PMCID: PMC11258611 DOI: 10.12688/wellcomeopenres.21302.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 07/23/2024] Open
Abstract
Background Trace amine-associated receptor 1 (TAAR1) agonism shows promise for treating psychosis, prompting us to synthesise data from human and non-human studies. Methods We co-produced a living systematic review of controlled studies examining TAAR1 agonists in individuals (with or without psychosis/schizophrenia) and relevant animal models. Two independent reviewers identified studies in multiple electronic databases (until 17.11.2023), extracted data, and assessed risk of bias. Primary outcomes were standardised mean differences (SMD) for overall symptoms in human studies and hyperlocomotion in animal models. We also examined adverse events and neurotransmitter signalling. We synthesised data with random-effects meta-analyses. Results Nine randomised trials provided data for two TAAR1 agonists (ulotaront and ralmitaront), and 15 animal studies for 10 TAAR1 agonists. Ulotaront and ralmitaront demonstrated few differences compared to placebo in improving overall symptoms in adults with acute schizophrenia (N=4 studies, n=1291 participants; SMD=0.15, 95%CI: -0.05, 0.34), and ralmitaront was less efficacious than risperidone (N=1, n=156, SMD=-0.53, 95%CI: -0.86, -0.20). Large placebo response was observed in ulotaront phase-III trials. Limited evidence suggested a relatively benign side-effect profile for TAAR1 agonists, although nausea and sedation were common after a single dose of ulotaront. In animal studies, TAAR1 agonists improved hyperlocomotion compared to control (N=13 studies, k=41 experiments, SMD=1.01, 95%CI: 0.74, 1.27), but seemed less efficacious compared to dopamine D 2 receptor antagonists (N=4, k=7, SMD=-0.62, 95%CI: -1.32, 0.08). Limited human and animal data indicated that TAAR1 agonists may regulate presynaptic dopaminergic signalling. Conclusions TAAR1 agonists may be less efficacious than dopamine D 2 receptor antagonists already licensed for schizophrenia. The results are preliminary due to the limited number of drugs examined, lack of longer-term data, publication bias, and assay sensitivity concerns in trials associated with large placebo response. Considering their unique mechanism of action, relatively benign side-effect profile and ongoing drug development, further research is warranted. Registration PROSPERO-ID: CRD42023451628.
Collapse
Affiliation(s)
- Spyridon Siafis
- Department of Psychiatry and Psychotherapy, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Mental Health (DZPG), partner site München/Augsburg, Germany
| | - Virginia Chiocchia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Malcolm R. Macleod
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Charlotte Austin
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | - Ava Homiar
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | - Francesca Tinsdeall
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Claire Friedrich
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | - Fiona J. Ramage
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Jaycee Kennett
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | - Nobuyuki Nomura
- Department of Psychiatry and Psychotherapy, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Mental Health (DZPG), partner site München/Augsburg, Germany
| | - Olena Maksym
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Grazia Rutigliano
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
| | - Luke J. Vano
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
| | - Robert A. McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - David Gilbert
- GALENOS Global Experiential Advisory Board, InHealth Associates, London, UK
| | - Edoardo G. Ostinelli
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Claire Stansfield
- EPPI Centre, Social Research Institute, University College London, London, England, UK
| | - Hossein Dehdarirad
- EPPI Centre, Social Research Institute, University College London, London, England, UK
| | - Damian Omari Juma
- My Mind Our Humanity, Young Leaders for Global Mental Health, Mombasa, Kenya
| | - Simonne Wright
- Stellenbosch University/South African Medical Research Council Genomics of Brain Disorders Extramural Research Unit, Department of Psychiatry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ouma Simple
- Stellenbosch University/South African Medical Research Council Genomics of Brain Disorders Extramural Research Unit, Department of Psychiatry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Olufisayo Elugbadebo
- Department of Psychiatry, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, England, UK
| | - Toshi A. Furukawa
- Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan
- Department of Clinical Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan
| | | | - Carmen Moreno
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense de Madrid, Madrid, Community of Madrid, Spain
| | - Julian H. Elliott
- Cochrane Australia, School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria, Australia
- Future Evidence Foundation, Melbourne, Australia
| | - Janna Hastings
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- School of Medicine, University of St. Gallen, St. Gallen, Switzerland
| | - James Thomas
- EPPI Centre, Social Research Institute, University College London, London, England, UK
| | - Susan Michie
- Centre for Behaviour Change, University College London, London, England, UK
| | - Emily S. Sena
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Soraya Seedat
- Stellenbosch University/South African Medical Research Council Genomics of Brain Disorders Extramural Research Unit, Department of Psychiatry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Matthias Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Jennifer Potts
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | - Andrea Cipriani
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Georgia Salanti
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Mental Health (DZPG), partner site München/Augsburg, Germany
| |
Collapse
|
6
|
Siafis S, McCutcheon R, Chiocchia V, Ostinelli EG, Wright S, Stansfield C, Juma DO, Mantas I, Howes OD, Rutigliano G, Ramage F, Tinsdeall F, Friedrich C, Milligan L, Moreno C, Elliott JH, Thomas J, Macleod MR, Sena ES, Seedat S, Salanti G, Potts J, Cipriani A, Leucht S. Trace amine-associated receptor 1 (TAAR1) agonists for psychosis: protocol for a living systematic review and meta-analysis of human and non-human studies. Wellcome Open Res 2023; 8:365. [PMID: 38634067 PMCID: PMC11021884 DOI: 10.12688/wellcomeopenres.19866.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND There is an urgent need to develop more effective and safer antipsychotics beyond dopamine 2 receptor antagonists. An emerging and promising approach is TAAR1 agonism. Therefore, we will conduct a living systematic review and meta-analysis to synthesize and triangulate the evidence from preclinical animal experiments and clinical studies on the efficacy, safety, and underlying mechanism of action of TAAR1 agonism for psychosis. METHODS Independent searches will be conducted in multiple electronic databases to identify clinical and animal experimental studies comparing TAAR1 agonists with licensed antipsychotics or other control conditions in individuals with psychosis or animal models for psychosis, respectively. The primary outcomes will be overall psychotic symptoms and their behavioural proxies in animals. Secondary outcomes will include side effects and neurobiological measures. Two independent reviewers will conduct study selection, data extraction using predefined forms, and risk of bias assessment using suitable tools based on the study design. Ontologies will be developed to facilitate study identification and data extraction. Data from clinical and animal studies will be synthesized separately using random-effects meta-analysis if appropriate, or synthesis without meta-analysis. Study characteristics will be investigated as potential sources of heterogeneity. Confidence in the evidence for each outcome and source of evidence will be evaluated, considering the summary of the association, potential concerns regarding internal and external validity, and reporting biases. When multiple sources of evidence are available for an outcome, an overall conclusion will be drawn in a triangulation meeting involving a multidisciplinary team of experts. We plan trimonthly updates of the review, and any modifications in the protocol will be documented. The review will be co-produced by multiple stakeholders aiming to produce impactful and relevant results and bridge the gap between preclinical and clinical research on psychosis. PROTOCOL REGISTRATION PROSPERO-ID: CRD42023451628.
Collapse
Affiliation(s)
- Spyridon Siafis
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Robert McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Health NHS Foundation Trust, Oxford, England, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
| | - Virginia Chiocchia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Canton of Bern, Switzerland
| | - Edoardo G. Ostinelli
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Health NHS Foundation Trust, Oxford, England, UK
- Oxford Precision Psychiatry Lab, University of Oxford, Oxford, England, UK
| | - Simonne Wright
- Department of Psychiatry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Claire Stansfield
- EPPI Centre, Social Research Institute, University College London, London, England, UK
| | | | - Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
| | - Grazia Rutigliano
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, England, UK
| | - Fiona Ramage
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Francesca Tinsdeall
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Claire Friedrich
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, University of Oxford, Oxford, England, UK
| | | | - Carmen Moreno
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense de Madrid, Madrid, Community of Madrid, Spain
| | - Julian H. Elliott
- Cochrane Australia, School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria, Australia
- Future Evidence Foundation, Melbourne, Australia
| | - James Thomas
- EPPI Centre, Social Research Institute, University College London, London, England, UK
| | - Malcolm R. Macleod
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Emily S. Sena
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Georgia Salanti
- Institute of Social and Preventive Medicine, University of Bern, Bern, Canton of Bern, Switzerland
| | - Jennifer Potts
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, University of Oxford, Oxford, England, UK
| | - Andrea Cipriani
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Health NHS Foundation Trust, Oxford, England, UK
- Oxford Precision Psychiatry Lab, University of Oxford, Oxford, England, UK
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - the GALENOS team
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Health NHS Foundation Trust, Oxford, England, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
- Institute of Social and Preventive Medicine, University of Bern, Bern, Canton of Bern, Switzerland
- Oxford Precision Psychiatry Lab, University of Oxford, Oxford, England, UK
- Department of Psychiatry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
- EPPI Centre, Social Research Institute, University College London, London, England, UK
- My Mind Our Humanity, Mombasa, Kenya
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, England, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- MQ Mental Health Research, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense de Madrid, Madrid, Community of Madrid, Spain
- Cochrane Australia, School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria, Australia
- Future Evidence Foundation, Melbourne, Australia
| |
Collapse
|