1
|
Huang J, Wang Q, Hu Y, Qi Z, Lin Z, Ying W, Zhou M. Proteomic Profiling for Serum Biomarkers in Mice Exposed to Ionizing Radiation. Dose Response 2019; 17:1559325819894794. [PMID: 31853238 PMCID: PMC6909274 DOI: 10.1177/1559325819894794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
In response to large-scale radiological incidents, rapid, accurate, and early triage biodosimeters are urgently required. In this study, we investigated candidate radiation-responsive biomarkers using proteomics approaches in mouse models. A total of 452 dysregulated proteins were identified in the serum samples of mice exposed to 0, 2, 5.5, 7, and 8 Gy at 6, 24, and 72 hours postirradiation. Ninety-eight proteins, including 46 at 6 hours, 36 at 24 hours, and 36 at 72 hours, were identified as radiation-responsive proteins (RRPs). Gene Ontology analysis showed the RRPs were involved in proteolysis, extracellular space, hydrolase activity, and carbohydrate binding. Kyoto Encyclopedia of Genes and Genome enrichment showed the RRPs were regulated in "the pentose phosphate pathway," "the proteasome," and "AGE-RAGE signaling in diabetic complications." There were 3 proteins changed and overlapped at all the 3 time points, 8 proteins changed at 6 and 24 hours, 4 proteins changed at 24 and 72hours, and 2 proteins changed at both 6 and 72 hours. Of these proteins, ORM2, HP, SAA1, SAA2, MBL2, COL1A1, and APCS were identified as candidate biomarkers for biodosimeter-based diagnosis through Pearson correlation analysis.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China
| | - Yingchun Hu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China
| | - Zhongwu Lin
- Science Research Management Department of the Academy of Military Sciences, Beijing, People’s Republic of China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, People’s Republic of China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Investigation of serum proteome homeostasis during radiation therapy by a quantitative proteomics approach. Biosci Rep 2019; 39:BSR20182319. [PMID: 31300526 PMCID: PMC6663990 DOI: 10.1042/bsr20182319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022] Open
Abstract
The purpose of the present study is to analyze the serum proteome of patients receiving Radiation Therapy (RT) at different stages of their treatment to discovery candidate biomarkers of the radiation-induced skin lesions and the molecular pathways underlying the radiation signatures. Six stages of RT treatment were monitored from patients treated because of brain cancer: before starting the treatment, during the treatment (four time points), and at 4 weeks from the last RT dose. Serum samples were analyzed by a proteomics approach based on the Data Independent Acquisition (DIA) mass spectrometry (MS). RT induced clear changes in the expression levels of 36 serum proteins. Among these, 25 proteins were down- or up-regulated significantly before the emergence of skin lesions. Some of these were still deregulated after the completion of the treatment. Few days before the appearance of the skin lesions, the levels of some proteins involved in the wound healing processes were down-regulated. The pathway analysis indicated that after partial body irradiation, the expression levels of proteins functionally involved in the acute inflammatory and immune response, lipoprotein process and blood coagulation, were deregulated.
Collapse
|
3
|
Jelonek K, Pietrowska M, Widlak P. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity. Int J Radiat Biol 2017; 93:683-696. [PMID: 28281355 DOI: 10.1080/09553002.2017.1304590] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Blood is the most common replacement tissue used to study systemic responses of organisms to different types of pathological conditions and environmental insults. Local irradiation during cancer radiotherapy induces whole body responses that can be observed at the blood proteome and metabolome levels. Hence, comparative blood proteomics and metabolomics are emerging approaches used in the discovery of radiation biomarkers. These techniques enable the simultaneous measurement of hundreds of molecules and the identification of sets of components that can discriminate different physiological states of the human body. Radiation-induced changes are affected by the dose and volume of irradiated tissues; hence, the molecular composition of blood is a hypothetical source of biomarkers for dose assessment and the prediction and monitoring of systemic responses to radiation. This review aims to provide a comprehensive overview on the available evidence regarding molecular responses to ionizing radiation detected at the level of the human blood proteome and metabolome. It focuses on patients exposed to radiation during cancer radiotherapy and emphasizes effects related to radiation-induced toxicity and inflammation. CONCLUSIONS Systemic responses to radiation detected at the blood proteome and metabolome levels are primarily related to the intensity of radiation-induced toxicity, including inflammatory responses. Thus, several inflammation-associated molecules can be used to monitor or even predict radiation-induced toxicity. However, these abundant molecular features have a rather limited applicability as universal biomarkers for dose assessment, reflecting the individual predisposition of the immune system and tissue-specific mechanisms involved in radiation-induced damage.
Collapse
Affiliation(s)
- Karol Jelonek
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| | - Monika Pietrowska
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| | - Piotr Widlak
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| |
Collapse
|
4
|
Challenges in biomarker discovery with MALDI-TOF MS. Clin Chim Acta 2016; 458:84-98. [PMID: 27134187 DOI: 10.1016/j.cca.2016.04.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/21/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022]
Abstract
MALDI-TOF MS technique is commonly used in system biology and clinical studies to search for new potential markers associated with pathological conditions. Despite numerous concerns regarding a sample preparation or processing of complex data, this strategy is still recognized as a popular tool and its awareness has risen in the proteomic community over the last decade. In this review, we present comprehensive application of MALDI mass spectrometry with special focus on profiling research. We also discuss major advantages and disadvantages of universal sample preparation methods such as micro-SPE columns, immunodepletion or magnetic beads, and we show the potential of nanostructured materials in capturing low molecular weight subproteomes. Furthermore, as the general protocol considerably affects spectra quality and interpretation, an alternative solution for improved ion detection, including hydrophobic constituents, data processing and statistical analysis is being considered in up-to-date profiling pattern. In conclusion, many reports involving MALDI-TOF MS indicated highly abundant proteins as valuable indicators, and at the same time showed the inaccuracy of available methods in the detection of low abundant proteome that is the most interesting from the clinical perspective. Therefore, the analytical aspects of sample preparation methods should be standardized to provide a reproducible, low sample handling and credible procedure.
Collapse
|
5
|
Widlak P, Jelonek K, Wojakowska A, Pietrowska M, Polanska J, Marczak Ł, Miszczyk L, Składowski K. Serum Proteome Signature of Radiation Response: Upregulation of Inflammation-Related Factors and Downregulation of Apolipoproteins and Coagulation Factors in Cancer Patients Treated With Radiation Therapy—A Pilot Study. Int J Radiat Oncol Biol Phys 2015; 92:1108-1115. [DOI: 10.1016/j.ijrobp.2015.03.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 01/03/2023]
|
6
|
Partial-Body Irradiation in Patients with Prostate Cancer Treated with IMRT Has Little Effect on the Composition of Serum Proteome. Proteomes 2015; 3:117-131. [PMID: 28248265 PMCID: PMC5217376 DOI: 10.3390/proteomes3030117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 11/16/2022] Open
Abstract
Partial body irradiation during cancer radiotherapy (RT) induces a response of irradiated tissues that could be observed at the level of serum proteome. Here we aimed to characterize the response to RT in group of patients treated because of prostate cancer. Five consecutive blood samples were collected before, during, and after the end of RT in a group of 126 patients who received definitive treatment with a maximum dose of 76 Gy. Serum peptidome, which was profiled in the 2000–16,000 Da range using MALDI-MS. Serum proteins were identified and quantified using the shotgun LC-MS/MS approach. The majority of changes in serum peptidome were detected between pre-treatment samples and samples collected after 3–4 weeks of RT (~25% of registered peptides changed their abundances significantly), yet the intensity of observed changes was not correlated significantly with the degree of acute radiation toxicity or the volume of irradiated tissues. Furthermore, there were a few serum proteins identified, the abundances of which were different in pre-RT and post-RT samples, including immunity and inflammation-related factors. Observed effects were apparently weaker than in comparable groups of head and neck cancer patients in spite of similar radiation doses and volumes of irradiated tissues in both groups. We concluded that changes observed at the level of serum proteome were low for this cohort of prostate cancer patients, although the specific components involved are associated with immunity and inflammation, and reflect the characteristic acute response of the human body to radiation.
Collapse
|
7
|
Deperas-Kaminska M, Bajinskis A, Marczyk M, Polanska J, Wersäll P, Lidbrink E, Ainsbury EA, Guipaud O, Benderitter M, Haghdoost S, Wojcik A. Radiation-induced changes in levels of selected proteins in peripheral blood serum of breast cancer patients as a potential triage biodosimeter for large-scale radiological emergencies. HEALTH PHYSICS 2014; 107:555-563. [PMID: 25353241 DOI: 10.1097/hp.0000000000000158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The threat of a large scale radiological emergency, where thousands of people may require fast biological dosimetry for the purpose of triage, makes it necessary to search for new, high throughput biological dosimeters. The authors tested an assay based on the quantitative analysis of selected proteins in peripheral blood serum. They were particularly interested in testing proteins that are specific to irradiation of skin, as these can be used in cases of partial body exposure. Candidate proteins were identified in an earlier study with mice, where skin of the animals was exposed to different doses of radiation and global expression of serum proteins was analyzed. Eight proteins were found, the expression of which showed a consistent dose-response relationship. Human analogues of these proteins were identified, and their expression was measured in peripheral blood serum of 16 breast cancer patients undergoing external beam radiotherapy. The proteins were Apolipoprotein E; Apolipoprotein H; Complement protein 7; Prothrombinase; Pantothenate Kinase 4; Alpha-2-macroglobulin; Fetuin B and Alpha-1-Anti-Chymotrypsin. Measurements were carried out in blood samples collected prior to exposure (control), on the day after one fraction (2 Gy), on the day after five fractions (10 Gy), on the day after 10 fractions (20 Gy), and 1 mo after 23-25 fractions (total dose of 46-50 Gy). Multivariate analysis was carried out, and a multinomial logistic regression model was built. The results indicate that the combined analysis of Apolipoprotein E, Factor X, and Pantothenate Kinase 4 allows discriminating between exposure to 2 Gy and lower and between 10 Gy and higher. The discrimination is possible up to 1 mo after exposure.
Collapse
Affiliation(s)
- Marta Deperas-Kaminska
- *CRPR, Stockholm University, Sweden; Institute of Mother and Child, Warszawa, Poland; †CRPR Stockholm University Sweden; Faculty of Medicine, University of Latvia; ‡Data Mining Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland; §Division of Radiotherapy, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden; **Public Health England Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxford; ††Institute for Radiological Protection and Nuclear Safety, France; ‡‡CRPR, Stockholm University, Sweden; §§CRPR, Stockholm University, Sweden; Jan Kochanowski University, Kielce, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ma HL, Yu C, Liu Y, Tan YR, Qiao JK, Yang X, Wang LZ, Li J, Chen Q, Chen FX, Zhang ZY, Zhong LP. Decreased expression of glutathione S-transferase pi correlates with poorly differentiated grade in patients with oral squamous cell carcinoma. J Oral Pathol Med 2014; 44:193-200. [PMID: 25047743 DOI: 10.1111/jop.12229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Hai-long Ma
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Cong Yu
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Ying Liu
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yi-ran Tan
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Jin-ke Qiao
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Xi Yang
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Li-zhen Wang
- Department of Oral Pathology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Jiang Li
- Department of Oral Pathology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Qiong Chen
- Department of Clinical Laboratories; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Fu-xiang Chen
- Department of Clinical Laboratories; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zhi-yuan Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Lai-ping Zhong
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
9
|
Nylund R, Lemola E, Hartwig S, Lehr S, Acheva A, Jahns J, Hildebrandt G, Lindholm C. Profiling of low molecular weight proteins in plasma from locally irradiated individuals. JOURNAL OF RADIATION RESEARCH 2014; 55:674-82. [PMID: 24570173 PMCID: PMC4099999 DOI: 10.1093/jrr/rru007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 05/21/2023]
Abstract
In studies reported in the 1960s and since, blood plasma from radiation-exposed individuals has been shown to induce chromosome damage when transferred into lymphocyte cultures of non-irradiated persons. This effect has been described to occur via clastogenic factors, whose nature is still mostly unknown. We have previously examined clastogenic factors from irradiated individuals by looking at plasma-induced DNA damage in reporter cells. Plasma was tested from ca. 30 locally exposed clinical patients receiving fractionated radiation treatment, as well as from three radiological accident victims exposed in 1994, albeit sampled 14 years post-accident. In the current work, proteome changes in the plasma from all subjects were examined with 2D gel electrophoresis-based proteomics techniques, in order to evaluate the level of protein expression with respect to the findings of a clastogenic factor effect. No differences were observed in protein expression due to local radiation exposure (pre- vs post-exposure). In contrast, plasma from the radiation accident victims showed alterations in the expression of 18 protein spots (in comparison with plasma from the control group). Among these, proteins such as haptoglobin, serotransferrin/transferrin, fibrinogen and ubiquitin-60S ribosomal protein L40 were observed, none of them likely to be clastogenic factors. In conclusion, the proteomics techniques applied were unable to identify changes in the proteome of the locally irradiated patients, whereas such differences were observed for the accident victims. However, association with the clastogenic effect or any specific clastogenic factor remains unresolved and thus further studies with more sensitive techniques are warranted.
Collapse
Affiliation(s)
- Reetta Nylund
- STUK - Radiation and Nuclear Safety Authority, Laippatie 4, PO Box 14, 00881 Helsinki, Finland
| | - Elina Lemola
- STUK - Radiation and Nuclear Safety Authority, Laippatie 4, PO Box 14, 00881 Helsinki, Finland
| | - Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Anna Acheva
- STUK - Radiation and Nuclear Safety Authority, Laippatie 4, PO Box 14, 00881 Helsinki, Finland
| | - Jutta Jahns
- Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 9a, 04103 Leipzig, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 9a, 04103 Leipzig, Germany Department of Radiotherapy, University of Rostock, Suedring 75, 18059 Rostock, Germany
| | - Carita Lindholm
- STUK - Radiation and Nuclear Safety Authority, Laippatie 4, PO Box 14, 00881 Helsinki, Finland
| |
Collapse
|
10
|
Radiation-induced changes in serum lipidome of head and neck cancer patients. Int J Mol Sci 2014; 15:6609-24. [PMID: 24747595 PMCID: PMC4013650 DOI: 10.3390/ijms15046609] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/06/2014] [Accepted: 04/03/2014] [Indexed: 01/20/2023] Open
Abstract
Cancer radiotherapy (RT) induces response of the whole patient’s body that could be detected at the blood level. We aimed to identify changes induced in serum lipidome during RT and characterize their association with doses and volumes of irradiated tissue. Sixty-six patients treated with conformal RT because of head and neck cancer were enrolled in the study. Blood samples were collected before, during and about one month after the end of RT. Lipid extracts were analyzed using MALDI-oa-ToF mass spectrometry in positive ionization mode. The major changes were observed when pre-treatment and within-treatment samples were compared. Levels of several identified phosphatidylcholines, including (PC34), (PC36) and (PC38) variants, and lysophosphatidylcholines, including (LPC16) and (LPC18) variants, were first significantly decreased and then increased in post-treatment samples. Intensities of changes were correlated with doses of radiation received by patients. Of note, such correlations were more frequent when low-to-medium doses of radiation delivered during conformal RT to large volumes of normal tissues were analyzed. Additionally, some radiation-induced changes in serum lipidome were associated with toxicity of the treatment. Obtained results indicated the involvement of choline-related signaling and potential biological importance of exposure to clinically low/medium doses of radiation in patient’s body response to radiation.
Collapse
|
11
|
Widłak P, Pietrowska M, Polańska J, Rutkowski T, Jelonek K, Kalinowska-Herok M, Gdowicz-Kłosok A, Wygoda A, Tarnawski R, Składowski K. Radiotherapy-related changes in serum proteome patterns of head and neck cancer patients; the effect of low and medium doses of radiation delivered to large volumes of normal tissue. J Transl Med 2013; 11:299. [PMID: 24304975 PMCID: PMC4235198 DOI: 10.1186/1479-5876-11-299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/25/2013] [Indexed: 11/30/2022] Open
Abstract
Background Conformal intensity-modulated radiation therapy (IMRT) involves irradiation of large volume of normal tissue with low and medium doses, biological relevance of which is not clear yet. Serum proteome features were used here to study the dose-volume effects in patients irradiated with IMRT due to head and neck cancer. Methods Blood samples were collected before and during RT, and also about one month and one year after the end of RT in a group of 72 patients who received definitive treatment. Serum proteome profiles were analyzed using MALDI-ToF mass spectrometry in 800–14,000 Da range. Results Major changes in serum proteome profiles were observed between pre-treatment samples and samples collected one month after RT. Radiation-related changes in serum proteome features were affected by low-to-medium doses delivered to a large fraction of body mass. Proteome changes were associated with intensity of acute radiation toxicity, indicating collectively that RT-related features of serum proteome reflected general response of patient’s organism to irradiation. However, short-term dose-related changes in serum proteome features were not associated significantly with the long-term efficacy of the treatment. Conclusions The effects of low and medium doses of radiation have been documented at the level of serum proteome, which is a reflection of the patient’s whole body response.
Collapse
Affiliation(s)
- Piotr Widłak
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Guipaud O. Serum and plasma proteomics and its possible use as detector and predictor of radiation diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 990:61-86. [PMID: 23378003 DOI: 10.1007/978-94-007-5896-4_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
All tissues can be damaged by ionizing radiation. Early biomarkers of radiation injury are critical for triage, treatment and follow-up of large numbers of people exposed to ionizing radiation after terrorist attacks or radiological accident, and for prediction of normal tissue toxicity before, during and after a treatment by radiotherapy. The comparative proteomic approach is a promising and powerful tool for the discovery of new radiation biomarkers. In association with multivariate statistics, proteomics enables measurement of the level of hundreds or thousands of proteins at the same time and identifies set of proteins that can discriminate between different groups of individuals. Human serum and plasma are the preferred samples for the study of normal and disease-associated proteins. Extreme complexity, extensive dynamic range, genetic and physiological variations, protein modifications and incompleteness of sampling by two-dimensional electrophoresis and mass spectrometry represent key challenges to reproducible, high-resolution, and high-throughput analyses of serum and plasma proteomes. The future of radiation research will possibly lie in molecular networks that link genome, transcriptome, proteome and metabolome variations to radiation pathophysiology and serve as sensors of radiation disease. This chapter reviews recent advances in proteome analysis of serum and plasma as well as its applications to radiation biology and radiation biomarker discovery for both radiation exposure and radiation tissue toxicity.
Collapse
Affiliation(s)
- Olivier Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, LRTE, 17, Fontenay-aux-Roses cedex, 92262, France.
| |
Collapse
|
13
|
MALDI-MS-Based Profiling of Serum Proteome: Detection of Changes Related to Progression of Cancer and Response to Anticancer Treatment. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:926427. [PMID: 22900176 PMCID: PMC3413974 DOI: 10.1155/2012/926427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/12/2012] [Accepted: 06/12/2012] [Indexed: 01/25/2023]
Abstract
Mass spectrometry-based analyses of the low-molecular-weight fraction of serum proteome allow identifying proteome profiles (signatures) that are potentially useful in detection and classification of cancer. Several published studies have shown that multipeptide signatures selected in numerical tests have potential values for diagnostics of different types of cancer. However due to apparent problems with standardization of methodological details, both experimental and computational, none of the proposed peptide signatures analyzed directly by MALDI/SELDI-ToF spectrometry has been approved for routine diagnostics. Noteworthy, several components of proposed cancer signatures, especially those characteristic for advanced cancer, were identified as fragments of blood proteins involved in the acute phase and inflammatory response. This indicated that among cancer biomarker candidates to be possibly identified by serum proteome profiling were rather those reflecting overall influence of a disease (and the therapy) upon the human organism, than products of cancer-specific genes. Current paper focuses on changes in serum proteome that are related to response of patient's organism to progressing malignancy and toxicity of anticancer treatment. In addition, several methodological issues that affect robustness and interlaboratory reproducibility of MS-based serum proteome profiling are discussed.
Collapse
|