1
|
Varela MF, Miyabe MM, Oria M. Fetal brain damage in congenital hydrocephalus. Childs Nerv Syst 2020; 36:1661-1668. [PMID: 32451664 DOI: 10.1007/s00381-020-04657-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Congenital hydrocephalus (HCP) is a developmental brain disorder characterized by the abnormal accumulation of cerebrospinal fluid within the ventricles. It is caused by genetic and acquired factors that start during early embryogenesis with disruption of the neurogerminal areas. As might be expected, early-onset hydrocephalus alters the process of brain development leading to irreparable neurological deficit. A primary alteration of the ependyma/neural stem cells (affecting vesicle trafficking and abnormal cell junctions) leads to its loss or denudation and translocation of neural progenitor cells (NPCs) and neural stem cells (NSCs) into the cerebrospinal fluid (CSF). Under these abnormal conditions, morphological and functional processes, underlying the concept of astroglial reaction, are initiated in an attempt to recover homeostasis in the periventricular zone. This astroglial reaction includes astrocyte hypertrophy, hyperplasia, and development of a new layer with reorganized functional features that resemble the ependyma. Despite decades of research, there is a lack of information concerning the biological basis of the brain abnormalities that are associated with HCP. DISCUSSION The present review of current literature discusses the neuropathological changes during gestation following the onset of congenital hydrocephalus and the unanswered questions into the pathophysiology of the disease. A better understanding of those missing points might help create novel therapeutic strategies that can reverse or even prevent the ultimate neurological impairment that affects this population and improve long-term clinical outcome.
Collapse
Affiliation(s)
- Maria Florencia Varela
- Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Marcos M Miyabe
- Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Marc Oria
- Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA. .,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Yang B, Ren BX, Tang FR. Prenatal irradiation-induced brain neuropathology and cognitive impairment. Brain Dev 2017; 39:10-22. [PMID: 27527732 DOI: 10.1016/j.braindev.2016.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
Abstract
Embryo/fetus is much more radiosensitive than neonatal and adult human being. The main potential effects of pre-natal radiation exposure on the human brain include growth retardation, small head/brain size, mental retardation, neocortical ectopias, callosal agenesis and brain tumor which may result in a lifetime poor quality of life. The patterns of prenatal radiation-induced effects are dependent not only on the stages of fetal development, the sensitivity of tissues and organs, but also on radiation sources, doses, dose rates. With the increased use of low dose radiation for diagnostic or radiotherapeutic purposes in recent years, combined with postnatal negative health effect after prenatal radiation exposure to fallout of Chernobyl nuclear power plant accident, the great anxiety and unnecessary termination of pregnancies after the nuclear disaster, there is a growing concern about the health effect of radiological examinations or therapies in pregnant women. In this paper, we reviewed current research progresses on pre-natal ionizing irradiation-induced abnormal brain structure changes. Subsequent postnatal neuropsychological and neurological diseases were provided. Relationship between irradiation and brain aging was briefly mentioned. The relevant molecular mechanisms were also discussed. Future research directions were proposed at the end of this paper. With limited human data available, we hoped that systematical review of animal data could relight research interests on prenatal low dose/dose rate irradiation-induced brain microanatomical changes and subsequent neurological and neuropsychological disorders.
Collapse
Affiliation(s)
- Bo Yang
- Medical School of Yangtze University, People's Republic of China
| | - Bo Xu Ren
- Medical School of Yangtze University, People's Republic of China.
| | - Feng Ru Tang
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, Singapore.
| |
Collapse
|
3
|
Current Evidence for Developmental, Structural, and Functional Brain Defects following Prenatal Radiation Exposure. Neural Plast 2016; 2016:1243527. [PMID: 27382490 PMCID: PMC4921147 DOI: 10.1155/2016/1243527] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022] Open
Abstract
Ionizing radiation is omnipresent. We are continuously exposed to natural (e.g., radon and cosmic) and man-made radiation sources, including those from industry but especially from the medical sector. The increasing use of medical radiation modalities, in particular those employing low-dose radiation such as CT scans, raises concerns regarding the effects of cumulative exposure doses and the inappropriate utilization of these imaging techniques. One of the major goals in the radioprotection field is to better understand the potential health risk posed to the unborn child after radiation exposure to the pregnant mother, of which the first convincing evidence came from epidemiological studies on in utero exposed atomic bomb survivors. In the following years, animal models have proven to be an essential tool to further characterize brain developmental defects and consequent functional deficits. However, the identification of a possible dose threshold is far from complete and a sound link between early defects and persistent anomalies has not yet been established. This review provides an overview of the current knowledge on brain developmental and persistent defects resulting from in utero radiation exposure and addresses the many questions that still remain to be answered.
Collapse
|
4
|
Munch TN, Rasmussen MLH, Wohlfahrt J, Juhler M, Melbye M. Risk factors for congenital hydrocephalus: a nationwide, register-based, cohort study. J Neurol Neurosurg Psychiatry 2014; 85:1253-9. [PMID: 24667207 DOI: 10.1136/jnnp-2013-306941] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate the associations between isolated congenital hydrocephalus (CHC) and maternal characteristics, maternal medical diseases, and medicine intake during pregnancy as well as birth characteristics of the child in a retrospective, register-based, nationwide cohort study. Furthermore, to identify the risk factors unique for isolated CHC as compared to syndromic CHC. METHODS We established a cohort of all children born in Denmark between 1978 and 2008. Information on CHC and maternal medical diseases were obtained from the National Patient Discharge Register, maternal intake of medicine during pregnancy from the National Prescription Drug Register, and birth characteristics of the child from the Danish National Birth Register. Rate ratios (RR) of isolated and syndromic CHC with 95% CI were estimated using log-linear Poisson regression. RESULTS In a cohort of 1928666 live-born children, we observed 1193 cases of isolated CHC (0.062/1000) born children. First-borns had an increased risk of isolated CHC compared to later-borns (1.32 95% CI 1.17 to 1.49) (0.72/1000 born children). First trimester exposure to maternal use of antidepressants was associated with a significantly increased risk of isolated CHC compared to unexposed children (RR 2.52, 95% CI 1.47 to 4.29) (1.5/1000 born children). Risk factors also found for syndromic CHC were: Male gender, multiples and maternal diabetes. CONCLUSIONS The higher risk for isolated CHC in first-born children as well as behavioural aspects and comorbidities associated with maternal use of antidepressants, should be the targets for future research. Potential biological pathways by which antidepressants may cause hydrocephalus remain to be elucidated.
Collapse
Affiliation(s)
- Tina Noergaard Munch
- Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark Department of Neurosurgery, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Jan Wohlfahrt
- Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark
| |
Collapse
|
5
|
Zhang Q, He X, Chen L, Zhang C, Gao X, Yang Z, Liu G. Synergistic regulation of p53 by Mdm2 and Mdm4 is critical in cardiac endocardial cushion morphogenesis during heart development. J Pathol 2012; 228:416-28. [DOI: 10.1002/path.4077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 07/08/2012] [Accepted: 07/11/2012] [Indexed: 12/23/2022]
|
6
|
Abstract
Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions.
Collapse
Affiliation(s)
- Jun Zhang
- Dept. of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 100, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
7
|
Ramos C, Fernández-Llebrez P, Bach A, Robert B, Soriano E. Msx1 disruption leads to diencephalon defects and hydrocephalus. Dev Dyn 2004; 230:446-60. [PMID: 15188430 DOI: 10.1002/dvdy.20070] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have analyzed the expression of the Msx1 gene in the developing mouse brain and examined the brain phenotype in homozygotes. Msx1 is expressed in every cerebral vesicle throughout development, particularly in neuroepithelia, such as those of the fimbria and the medulla. Timing analysis suggests that Msx1(nLacZ) cells delaminate and migrate radially from these epithelia, mainly at embryonic days 14-16, while immunohistochemistry studies reveal that some of the beta-galactosidase migrating cells are oligodendrocytes or astrocytes. Our results suggest that the Msx1 neuroepithelia of fimbria and medulla may be a source of glial precursors. The Msx1 mutants display severe hydrocephalus at birth, while the subcommissural organ, the habenula, and the posterior commissure fail to develop correctly. No label was detected in the mutant subcommissural organ using a specific antibody against Reissner's fiber. Besides, the fasciculus retroflexus deviates close to the subcommissural organ, while the paraventricular thalamic nucleus shows histological disorganization. Our results implicate the Msx1 gene in the differentiation of the subcommissural organ cells and posterior commissure and that Msx1 protein may play a role in the pathfinding and bundling of the fasciculus retroflexus and in the structural arrangement of the paraventricular thalamic nucleus.
Collapse
Affiliation(s)
- Casto Ramos
- Department of Cell Biology, University of Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
8
|
Qu J, Cheng T, Shi C, Lin Y, Ran X. A study on the activity of fibroblast cells in connection with tissue recovery in the wounds of skin injury after whole-body irradiation. JOURNAL OF RADIATION RESEARCH 2004; 45:341-344. [PMID: 15304979 DOI: 10.1269/jrr.45.341] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The 6 Gy of whole-body irradiation (WBI) with gamma rays results in an impairment of injured skin tissue recovery and renders a delay in the healing process. For an understanding of whether WBI has damaging effects on fibroblasts in wounds, fibroblasts in wounds combined with WBI and those of simple incision were isolated and cultivated, and abilities connected with tissue repair, including proliferation, attachment, adhesion, and apoptosis, were determined by direct cell count, immunohistochemical staining for proliferation cell nuclear antigen (PCNA), and TUNEL assay. The results showed that the abilities of proliferation and the attachment and adhesion of fibroblasts from wounds combined with WBI significantly decreased in comparison with those having simple incisions on the 3rd and 5th days of posttrauma, whereas the apoptotic ratio of fibroblasts from wounds combined with WBI significantly increased. These data suggest that WBI may exert damaging effects on fibroblasts in wounds, which might be one of the dominant reasons for the impaired healing of wounds combined with WBI.
Collapse
Affiliation(s)
- Jifu Qu
- Institute of Combined Injury of PLA, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, P.R. China
| | | | | | | | | |
Collapse
|
9
|
Migliorini D, Lazzerini Denchi E, Danovi D, Jochemsen A, Capillo M, Gobbi A, Helin K, Pelicci PG, Marine JC. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol 2002; 22:5527-38. [PMID: 12101245 PMCID: PMC133932 DOI: 10.1128/mcb.22.15.5527-5538.2002] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the characterization of a mutant mouse line with a specific gene trap event in the Mdm4 locus. Absence of Mdm4 expression results in embryonic lethality (10.5 days postcoitum [dpc]), which was rescued by transferring the Mdm4 mutation into a Trp53-null background. Mutant embryos were characterized by overall growth deficiency, anemia, improper neural tube closure, and dilation of lateral ventricles. In situ analysis demonstrated increased levels of p21(CIP1/Waf1) and lower levels of Cyclin E and proliferating cell nuclear antigen expression. Consistent with lack of 5-bromo-2'-deoxyuridine incorporation, these data suggest a block of mutant embryo cells in the G(1) phase of the cell cycle. Accordingly, Mdm4-deficient mouse embryonic fibroblasts manifested a greatly reduced proliferative capacity in culture. Moreover, extensive p53-dependent cell death was specifically detected in the developing central nervous system of the Mdm4 mutant embryos. These findings unambiguously assign a critical role for Mdm4 as a negative regulator of p53 and suggest that Mdm4 could contribute to neoplasias retaining wild-type Trp53. Finally, we provide evidence indicating that Mdm4 plays no role on cell proliferation or cell cycle control that is distinct from its ability to modulate p53 function.
Collapse
Affiliation(s)
- Domenico Migliorini
- Department of Experimental Oncology, European Institute of Oncology, 435 Via Ripamonti, 20141 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sun XZ, Takahashi S, Kubota Y, Sato H, Cui C, Fukui Y, Inouye M. Types and three-dimensional distribution of neuronal ectopias in the brain of mice prenatally subjected to X-irradiation. JOURNAL OF RADIATION RESEARCH 2002; 43:89-98. [PMID: 12056333 DOI: 10.1269/jrr.43.89] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The types and three-dimensional distribution of neocortical ectopias following prenatal exposure to X-irradiation were studied by a histological examination and computer reconstruction techniques. Pregnant ICR mice were subjected to X-irradiation at a dose of 1.5 Gy on embryonic day 13. The brains from 30-day-old mice were serially sectioned on the frontal plane at 15 microns, stained with HE and observed with a microscope. The image data for the sections were input to a computer, and then reconstructed to three-dimensional brain structures using the Magellan 3.6 program. Sectional images were then drawn on a computer display at 240 microns intervals, and the positions of the different types of neocortical ectopias were marked using color coding. Three types of neocortical ectopias were recognized in the irradiated brains. Neocortical Lay I ectopias were identified as small patches in the caudal occipital cortex, and were located more laterally in the neocortex in caudal sections than in the rostral sections. Periventricular ectopias were located more rostrally than Lay I ectopias, and were found from the most caudal extent of the presumed motor cortex to the most caudal extent of the lateral ventricle. Hippocampal ectopias appeared as continuous linear bands, and were frequently associated with the anterior parts of the periventricular ectopias.
Collapse
Affiliation(s)
- Xue-Zhi Sun
- Environmental and Toxicological Sciences Research Group, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kim SH, Lee JH, Oh H, Kim SR, Lee CS, Jo SK, Kim TH, Lee YS. Dependence of malformation upon gestational age and exposed dose of gamma radiation. JOURNAL OF RADIATION RESEARCH 2001; 42:255-264. [PMID: 11840642 DOI: 10.1269/jrr.42.255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to evaluate the importance of gestational age and the dose-incidence relationship by gamma radiation, pregnant ICR mice at gestational days from 2.5 to 15.5 days post-coitus (p.c.) were exposed to a single dose of 2.0 Gy and also at day 11.5 after conception, which was the most sensitive stage for the induction of major congenital malformations. The animals were sacrificed on day 18 of gestation and the fetuses were examined for mortality, growth retardation, changes in head size and other morphological abnormalities. The only demonstrable effect of irradiation during the pre-implantation period was an increase in prenatal mortality. Resorptions were maximal on exposure at day 2.5 after conception. The pre-implantation irradiated embryos which survived did not show any major fetal abnormalities. A small head, growth retardation, a cleft palate, dilatation of the cerebral ventricle, a renal pelvis, and abnormalities of the extremities and tail after exposure were prominent during the organogenesis period, especially on day 11.5 of gestation. As for the dose-incidence relationship, the incidence of a small head, growth-retarded fetuses, a cleft palate, dilatation of cerebral ventricle and abnormalities of the extremities in live fetuses rose as the radiation dose increased. The result indicated that the late period of organogenesis in the development of the brain, skull and extremities of a mouse was a particularly sensitive phase. The threshold doses of radiation that induced a cleft palate and dilatation of the cerebral ventricle, and abnormal extremities were between 1.0 and 2.0 Gy, and between 0.5 and 1.0 Gy, respectively.
Collapse
Affiliation(s)
- S H Kim
- College of Veterinary Medicine, Chonnam National University, Kwangju, Korea
| | | | | | | | | | | | | | | |
Collapse
|