1
|
Yoo SS, Jorgensen TJ, Kennedy AR, Boice JD, Shapiro A, Hu TCC, Moyer BR, Grace MB, Kelloff GJ, Fenech M, Prasanna PGS, Coleman CN. Mitigating the risk of radiation-induced cancers: limitations and paradigms in drug development. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2014; 34:R25-52. [PMID: 24727460 PMCID: PMC7668684 DOI: 10.1088/0952-4746/34/2/r25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The United States radiation medical countermeasures (MCM) programme for radiological and nuclear incidents has been focusing on developing mitigators for the acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE), and biodosimetry technologies to provide radiation dose assessments for guiding treatment. Because a nuclear accident or terrorist incident could potentially expose a large number of people to low to moderate doses of ionising radiation, and thus increase their excess lifetime cancer risk, there is an interest in developing mitigators for this purpose. This article discusses the current status, issues, and challenges regarding development of mitigators against radiation-induced cancers. The challenges of developing mitigators for ARS include: the long latency between exposure and cancer manifestation, limitations of animal models, potential side effects of the mitigator itself, potential need for long-term use, the complexity of human trials to demonstrate effectiveness, and statistical power constraints for measuring health risks (and reduction of health risks after mitigation) following relatively low radiation doses (<0.75 Gy). Nevertheless, progress in the understanding of the molecular mechanisms resulting in radiation injury, along with parallel progress in dose assessment technologies, make this an opportune, if not critical, time to invest in research strategies that result in the development of agents to lower the risk of radiation-induced cancers for populations that survive a significant radiation exposure incident.
Collapse
Affiliation(s)
- Stephen S Yoo
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- SSY, PGSP and CNC had equal contribution in the preparation of this manuscript
| | - Timothy J Jorgensen
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington DC, USA
| | - Ann R Kennedy
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Boice
- Department of Medicine, Division of Epidemiology, Vanderbilt-Ingram Cancer Center, Vanderbilt School of Medicine, Nashville, TN, USA
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
| | - Alla Shapiro
- Office of Counter-Terrorism and Emergency Coordination, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tom C-C Hu
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, Washington, DC, USA
| | - Brian R Moyer
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, Washington, DC, USA
| | - Marcy B Grace
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, Washington, DC, USA
| | - Gary J Kelloff
- Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Michael Fenech
- Commonwealth Scientific and Industrial Research Organisation, Adelaide, Australia
| | - Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- SSY, PGSP and CNC had equal contribution in the preparation of this manuscript
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- SSY, PGSP and CNC had equal contribution in the preparation of this manuscript
| |
Collapse
|
2
|
Uddin AN, Labuda I, Burns FJ. A novel mechanism of filaggrin induction and sunburn prevention by β-damascenone in Skh-1 mice. Toxicol Appl Pharmacol 2012; 265:335-41. [PMID: 22982537 DOI: 10.1016/j.taap.2012.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 12/11/2022]
Abstract
Understanding how oral administration of aroma terpenes can prevent sunburn or skin cancer in mice could lead to more effective and safer ways of blocking sun damage to human skin. To establish sunburn preventive activity, female Skh-1 mice were given oral β-damascenone followed by irradiation with UVR from fluorescent 'sunlamps'. The following endpoints were evaluated versus controls at various times between 1 and 12 days after the terpene: whole genome gene expression and in situ immunohistochemistry of PCNA, keratin 10, filaggrin and caspase 14, and sunburn was evaluated at 5 days. UVR-induced sunburn was prevented by a single oral β-damascenone dose as low as 20 μL (0.95 mg/g body weight). Microarray analysis showed sunburn prevention doses of β-damascenone up-regulated several types of cornification genes, including keratins 1 and 10, filaggrin, caspase 14, loricrin, hornerin and 6 late cornified envelope genes. Immunohistochemical studies of PCNA labeling showed that β-damascenone increased the proliferation rates of the following cell types: epidermal basal cells, follicular outer root sheath cells and sebaceous gland cells. Keratin 10 was not affected by β-damascenone in epidermis, and filaggrin and caspase 14 were increased in enlarged sebaceous glands. The thickness of the cornified envelope plus sebum layer nearly doubled within 1 day after administration of the β-damascenone and remained at or above double thickness for at least 12 days. β-Damascenone protected against sunburn by activating a sebaceous gland-based pathway that fortified and thickened the cornified envelope plus sebum layer in a way that previously has been observed to occur only in keratinocytes.
Collapse
Affiliation(s)
- Ahmed N Uddin
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | | | | |
Collapse
|
3
|
Burns FJ, Tang MS, Frenkel K, Nádas A, Wu F, Uddin A, Zhang R. Induction and prevention of carcinogenesis in rat skin exposed to space radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2007; 46:195-9. [PMID: 17387500 DOI: 10.1007/s00411-007-0106-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/05/2007] [Indexed: 05/14/2023]
Abstract
Quantitative cancer incidence data exist for various laboratory animal models, but little of this information is usable for estimating human risks, primarily because of uncertainties about possible mechanistic differences among species. Acceptance and utilization of animal data for human risk assessment will require a much better understanding of the comparative underlying mechanisms than now exists. A dual-lesion, radiation-track model in rat skin has proven to be consistent with tumor induction data with respect to acute radiation doses ranging from 0.5 up to 10 Gy and higher, and average LETs ranging from 0.34 to 150 keV microm(-1) according to the form neoplastic risk (D,L) = CLD + BD2. A recent result with the 56Fe ion beam showed dose-response consistency for malignant (carcinomas) and benign (fibromas) tumor induction with earlier results utilizing argon and neon ion beams. A discrepancy between the model and experiment was found indicating that proportionality of cancer yield with LET did not occur at 150 versus 125 keV microm(-1), i.e. tumor yield did not increase in spite of a 20% increase of LET, which suggests that a LET response maximum exists at or within this dose range. Concordance between the model and tumor induction data in rat skin implies that potential intervening complexities of carcinogenic progression fail to obscure the basic radiobiological assumptions underpinning the model. Gene expression microarray analysis shows that vitamin A inhibits the expression of about 80% of the inflammation-related genes induced by the radiation and prevents about 46% of the neoplasms associated with 56Fe ion radiation without appearing to interfere with the underlying dose and LET response patterns. Further validation is needed, but the model has the potential to provide quantitative estimates of cancer risk as a function of dose and LET for almost any type of radiation exposure and even for combinations of different radiations provided only three empirical parameters can be established for each type of radiation and organ system.
Collapse
Affiliation(s)
- Fredric J Burns
- Department of Environmental Medicine, NYU School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Zhang R, Burns FJ, Chen H, Chen S, Wu F. Alterations in gene expression in rat skin exposed to 56Fe ions and dietary vitamin A acetate. Radiat Res 2006; 165:570-81. [PMID: 16669712 DOI: 10.1667/rr3556.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The purpose of the present work was to examine gene expression patterns in rat skin exposed to a beam of (56)Fe ions, a surrogate for the high-energy, heavy-ion galactic radiation background, as a basis for obtaining a better understanding of the possible mechanism(s) behind the radioprotective activity of vitamin A. A 2 x 4-cm rectangle of dorsal rat skin was exposed to 1.01 GeV/nucleon (56)Fe ions generated by the Alternating Gradient Synchrotron at Brookhaven National Laboratory. Gene expression patterns were monitored in either the presence or absence of a 250-ppm dietary supplement of vitamin A acetate in powdered lab chow. Although vitamin A and other retinoids show anti-carcinogenic activity in several animal models, the underlying changes in gene expression have not been examined extensively. At either 1 or 7 day after irradiation, a 1-cm square of irradiated and control rat skin was excised and analyzed using the Affymetrix rat microarray (RG_U34A) system. Microarray responses were displayed and processed by GeneSpring 7.0 and GOTree software. At 1 day after 3 Gy of (56)Fe-ion irradiation, the expression of 110 genes was significantly up-regulated (P < = 0.05) in comparison to levels in control rat skin, while no genes were altered by the vitamin A acetate supplement alone. Combined with (56)Fe-ion radiation, the vitamin A acetate supplement blocked the expression of 88 (80%) of the 110 genes and eliminated 16 of 18 gene categories that were significantly altered (all increased) by the (56)Fe-ion radiation. Categories with large numbers of genes eliminated by the retinoid included response to stress, 33 genes; response to biotic stimulus, 38 genes; signal transduction, 35 genes; and regulation of cellular/physiological process, 40 genes. Even for immune response and response to biotic stimulus, the only two categories that remained significantly altered in the presence of the vitamin, the combined number of altered genes was reduced from 74 to 13. No significant alterations in gene expression were found at 7 days relative to the numbers in controls. The results indicate that at 1 day dietary vitamin A acetate strongly interfered with (56)Fe-ion-induced gene expression within the broad categories of stimulus- and stress-related genes, implying that the latter gene categories likely play a role in the radioprotective action of the vitamin.
Collapse
Affiliation(s)
- Ronghe Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | |
Collapse
|