1
|
Ezeah CSA, Shimazu J, Kawanabe T, Shimizu M, Kawashima S, Kaji M, Ezinma CO, Nuruzzaman M, Minato N, Fukai E, Okazaki K. Quantitative trait locus (QTL) analysis and fine-mapping for Fusarium oxysporum disease resistance in Raphanus sativus using GRAS-Di technology. BREEDING SCIENCE 2023; 73:421-434. [PMID: 38737918 PMCID: PMC11082455 DOI: 10.1270/jsbbs.23032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/16/2023] [Indexed: 05/14/2024]
Abstract
Fusarium wilt is a significant disease in radish, but the genetic mechanisms controlling yellows resistance (YR) are not well understood. This study aimed to identify YR-QTLs and to fine-map one of them using F2:3 populations developed from resistant and susceptible radish parents. In this study, two high-density genetic maps each containing shared co-dominant markers and either female or male dominant markers that spanned 988.6 and 1127.5 cM with average marker densities of 1.40 and 1.53 cM, respectively, were generated using Genotyping by Random Amplicon Sequencing-Direct (GRAS-Di) technology. We identified two YR-QTLs on chromosome R2 and R7, and designated the latter as ForRs1 as the major QTL. Fine mapping narrowed down the ForRs1 locus to a 195 kb region. Among the 16 predicted genes in the delimited region, 4 genes including two receptor-like protein and -kinase genes (RLP/RLK) were identified as prime candidates for ForRs1 based on the nucleotide sequence comparisons between the parents and their predicted functions. This study is the first to use a GRAS-Di for genetic map construction of cruciferous crops and fine map the YR-QTL on the R7 chromosome of radish. These findings will provide groundbreaking insights into radish YR breeding and understanding the genetics of YR mechanism.
Collapse
Affiliation(s)
- Chukwunonso Sylvanus Austin Ezeah
- Laboratory of Plant breeding, Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
- Federal Department of Agriculture, Federal Ministry of Agriculture and Rural Development, Abuja, FCT, Nigeria
| | | | | | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | | | - Makoto Kaji
- Watanabe Seed Co., Ltd., Miyagi 987-0003, Japan
| | - Charles Onyemaechi Ezinma
- Federal Department of Agriculture, Federal Ministry of Agriculture and Rural Development, Abuja, FCT, Nigeria
| | - Md Nuruzzaman
- Laboratory of Plant breeding, Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Nami Minato
- Laboratory of Plant breeding, Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Eigo Fukai
- Laboratory of Plant breeding, Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Keiichi Okazaki
- Laboratory of Plant breeding, Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
2
|
Moriyama T, Shea DJ, Yokoi N, Imakiire S, Saito T, Ohshima H, Saito H, Okamoto S, Fukai E, Okazaki K. Identification of a Male Sterile Candidate Gene in Lilium x formolongi and Transfer of the Gene to Easter Lily ( L. longiflorum) via Hybridization. FRONTIERS IN PLANT SCIENCE 2022; 13:914671. [PMID: 35845645 PMCID: PMC9277459 DOI: 10.3389/fpls.2022.914671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Pollen-free varieties are advantageous in promoting cut-flower production. In this study, we identified a candidate mutation which is responsible for pollen sterility in a strain of Lilium × formolongi, which was originally identified as a naturally occurred male-sterile plant in a seedling population. The pollen sterility occurred due to the degradation of pollen mother cells (PMCs) before meiotic cell division. Genetic analysis suggested that the male-sterile phenotype is attributed to one recessive locus. Transcriptome comparison between anthers of sterile and fertile plants in a segregated population identified a transcript that was expressed only in pollen-fertile plants, which is homologous to TDF1 (DEFECTIVE in TAPETAL DEVELOPMENT and FUNCTION1) in Arabidopsis, a gene encoding a transcription factor AtMYB35 that is known as a key regulator of pollen development. Since tdf1 mutant shows male sterility, we assumed that the absence transcript of the TDF1-like gene, named as LflTDF1, is the reason for pollen sterility observed in the mutant. A 30 kbp-long nanopore sequence read containing LflTDF1 was obtained from a pollen-fertile accession. PCR analyses using primers designed from the sequence suggested that at least a 30kbp-long region containing LflTDF1 was deleted or replaced by unknown sequence in the pollen-sterile mutant. Since the cross between L. × formolongi and Easter lily (L. longiflorum) is compatible, we successfully introgressed the male-sterile allele, designated as lfltdf1, to Easter lily. To our knowledge, this is the first report of molecular identification of a pollen-sterile candidate gene in lily. The identification and marker development of LflTDF1 gene will assist pollen-free lily breeding of Easter lilies and other lilies.
Collapse
Affiliation(s)
- Takahiro Moriyama
- Laboratory Plant Breeding, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Daniel John Shea
- Laboratory Plant Breeding, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Naoto Yokoi
- Akita Prefectural Agriculture, Forestry and Fisheries Research Center, Agriculture Experimental Station, Akita, Japan
| | - Seiro Imakiire
- Fruit Tree and Flower Division, Kagoshima Prefectural Institute for Agricultural Development, Kagoshima, Japan
| | - Takaaki Saito
- Akita Prefectural Agriculture, Forestry and Fisheries Research Center, Agriculture Experimental Station, Akita, Japan
| | - Hikaru Ohshima
- Laboratory Plant Breeding, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Hina Saito
- Laboratory Plant Breeding, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Satoru Okamoto
- Laboratory Plant Breeding, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Eigo Fukai
- Laboratory Plant Breeding, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Keiichi Okazaki
- Laboratory Plant Breeding, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Development of a New DNA Marker for Fusarium Yellows Resistance in Brassica rapa Vegetables. PLANTS 2021; 10:plants10061082. [PMID: 34072246 PMCID: PMC8229042 DOI: 10.3390/plants10061082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022]
Abstract
In vegetables of Brassica rapa L., Fusarium oxysporum f. sp. rapae (For) or F. oxysporum f. sp. conglutinans (Foc) cause Fusarium yellows. A resistance gene against Foc (FocBr1) has been identified, and deletion of this gene results in susceptibility (focbr1-1). In contrast, a resistance gene against For has not been identified. Inoculation tests showed that lines resistant to Foc were also resistant to For, and lines susceptible to Foc were susceptible to For. However, prediction of disease resistance by a dominant DNA marker on FocBr1 (Bra012688m) was not associated with disease resistance of For in some komatsuna lines using an inoculation test. QTL-seq using four F2 populations derived from For susceptible and resistant lines showed one causative locus on chromosome A03, which covers FocBr1. Comparison of the amino acid sequence of FocBr1 between susceptible and resistant alleles (FocBr1 and FocBo1) showed that six amino acid differences were specific to susceptible lines. The presence and absence of FocBr1 is consistent with For resistance in F2 populations. These results indicate that FocBr1 is essential for For resistance, and changed amino acid sequences result in susceptibility to For. This susceptible allele is termed focbr1-2, and a new DNA marker (focbr1-2m) for detection of the focbr1-2 allele was developed.
Collapse
|
4
|
Genetics of Clubroot and Fusarium Wilt Disease Resistance in Brassica Vegetables: The Application of Marker Assisted Breeding for Disease Resistance. PLANTS 2020; 9:plants9060726. [PMID: 32526827 PMCID: PMC7355935 DOI: 10.3390/plants9060726] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 01/29/2023]
Abstract
The genus Brassica contains important vegetable crops, which serve as a source of oil seed, condiments, and forages. However, their production is hampered by various diseases such as clubroot and Fusarium wilt, especially in Brassica vegetables. Soil-borne diseases are difficult to manage by traditional methods. Host resistance is an important tool for minimizing disease and many types of resistance (R) genes have been identified. More than 20 major clubroot (CR) disease-related loci have been identified in Brassica vegetables and several CR-resistant genes have been isolated by map-based cloning. Fusarium wilt resistant genes in Brassica vegetables have also been isolated. These isolated R genes encode the toll-interleukin-1 receptor/nucleotide-binding site/leucine-rice-repeat (TIR-NBS-LRR) protein. DNA markers that are linked with disease resistance allele have been successfully applied to improve disease resistance through marker-assisted selection (MAS). In this review, we focused on the recent status of identifying clubroot and Fusarium wilt R genes and the feasibility of using MAS for developing disease resistance cultivars in Brassica vegetables.
Collapse
|