1
|
Amadu MK, Beyene Y, Chaikam V, Tongoona PB, Danquah EY, Ifie BE, Burgueno J, Prasanna BM, Gowda M. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and agronomic traits under drought and optimum conditions in maize. BMC PLANT BIOLOGY 2025; 25:135. [PMID: 39893411 PMCID: PMC11786572 DOI: 10.1186/s12870-025-06135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Drought is a major abiotic stress in sub-Saharan Africa, impacting maize growth and development leading to severe yield loss. Drought tolerance is a complex trait regulated by multiple genes, making direct grain yield selection ineffective. To dissect the genetic architecture of grain yield and flowering traits under drought stress, a genome-wide association study (GWAS) was conducted on a panel of 236 maize lines testcrossed and evaluated under managed drought and optimal growing conditions in multiple environments using seven multi-locus GWAS models (mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, ISIS EM-BLASSO, and FARMCPU) from mrMLM and GAPIT R packages. Genomic prediction with RR-BLUP model was applied on BLUEs across locations under optimum and drought conditions. RESULTS A total of 172 stable and reliable quantitative trait nucleotides (QTNs) were identified, of which 77 are associated with GY, AD, SD, ASI, PH, EH, EPO and EPP under drought and 95 are linked to GY, AD, SD, ASI, PH, EH, EPO and EPP under optimal conditions. Among these QTNs, 17 QTNs explained over 10% of the phenotypic variation (R2 ≥ 10%). Furthermore, 43 candidate genes were discovered and annotated. Two major candidate genes, Zm00001eb041070 closely associated with grain yield near peak QTN, qGY_DS1.1 (S1_216149215) and Zm00001eb364110 closely related to anthesis-silking interval near peak QTN, qASI_DS8.2 (S8_167256316) were identified, encoding AP2-EREBP transcription factor 60 and TCP-transcription factor 20, respectively under drought stress. Haplo-pheno analysis identified superior haplotypes for qGY_DS1.1 (S1_216149215) associated with the higher grain yield under drought stress. Genomic prediction revealed moderate to high prediction accuracies under optimum and drought conditions. CONCLUSION The lines carrying superior haplotypes can be used as potential donors in improving grain yield under drought stress. Integration of genomic selection with GWAS results leads not only to an increase in the prediction accuracy but also to validate the function of the identified candidate genes as well increase in the accumulation of favorable alleles with minor and major effects in elite breeding lines. This study provides valuable insight into the genetic architecture of grain yield and secondary traits under drought stress.
Collapse
Affiliation(s)
- Manigben Kulai Amadu
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
- CSIR-Savanna Agricultural Research Institute, PO. Box 52, Tamale, Nyankpala, Ghana
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya.
| | - Vijay Chaikam
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya
| | - Pangirayi B Tongoona
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
| | - Eric Y Danquah
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
| | - Beatrice E Ifie
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3EE, UK
| | - Juan Burgueno
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, El Batán, Edo. de Mexico, CP 52640, Mexico
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya.
| |
Collapse
|
2
|
Qu J, Yu D, Gu W, Khalid MHB, Kuang H, Dang D, Wang H, Prasanna B, Zhang X, Zhang A, Zheng H, Guan Y. Genetic architecture of kernel-related traits in sweet and waxy maize revealed by genome-wide association analysis. Front Genet 2024; 15:1431043. [PMID: 39399216 PMCID: PMC11466784 DOI: 10.3389/fgene.2024.1431043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Maize (Zea mays L.) is one of the most important crops worldwide, the kernel size-related traits are the major components of maize grain yield. Methods To dissect the genetic architecture of four kernel-related traits of 100-kernel weight, kernel length, kernel width, and kernel diameter, a genome-wide association study (GWAS) was conducted in the waxy and sweet maize panel comprising of 447 maize inbred lines re-sequenced at the 5× coverage depth. GWAS analysis was carried out with the mixed linear model using 1,684,029 high-quality SNP markers. Results In total, 49 SNPs significantly associated with the four kernel-related traits were identified, including 46 SNPs on chromosome 3, two SNPs on chromosome 4, and one SNP on chromosome 7. Haplotype regression analysis identified 338 haplotypes that significantly affected these four kernel-related traits. Genomic selection (GS) results revealed that a set of 10,000 SNPs and a training population size of 30% are sufficient for the application of GS in waxy and sweet maize breeding for kernel weight and kernel size. Forty candidate genes associated with the four kernel-related traits were identified, including both Zm00001d000707 and Zm00001d044139 expressed in the kernel development tissues and stages with unknown functions. Discussion These significant SNPs and important haplotypes provide valuable information for developing functional markers for the implementation of marker-assisted selection in breeding. The molecular mechanism of Zm00001d000707 and Zm00001d044139 regulating these kernel-related traits needs to be investigated further.
Collapse
Affiliation(s)
- Jingtao Qu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Diansi Yu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Gu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | - Huiyun Kuang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongdong Dang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hui Wang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Ao Zhang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yuan Guan
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
3
|
Jiang F, Liu L, Li Z, Bi Y, Yin X, Guo R, Wang J, Zhang Y, Shaw RK, Fan X. Identification of Candidate QTLs and Genes for Ear Diameter by Multi-Parent Population in Maize. Genes (Basel) 2023; 14:1305. [PMID: 37372485 DOI: 10.3390/genes14061305] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Ear diameter (ED) is a critical component of grain yield (GY) in maize (Zea mays L.). Studying the genetic basis of ED in maize is of great significance in enhancing maize GY. Against this backdrop, this study was framed to (1) map the ED-related quantitative trait locus (QTL) and SNPs associated with ED; and (2) identify putative functional genes that may affect ED in maize. To accomplish this, an elite maize inbred line, Ye107, which belongs to the Reid heterotic group, was used as a common parent and crossed with seven elite inbred lines from three different heterotic groups (Suwan1, Reid, and nonReid) that exhibited abundant genetic variation in ED. This led to the construction of a multi-parent population consisting of 1215 F7 recombinant inbred lines (F7RILs). A genome-wide association study (GWAS) and linkage analysis were then conducted for the multi-parent population using 264,694 high-quality SNPs generated via the genotyping-by-sequencing method. Our study identified a total of 11 SNPs that were significantly associated with ED through the GWAS, and three QTLs were revealed by the linkage analysis for ED. The major QTL on chromosome 1 was co-identified in the region by the GWAS at SNP_143985532. SNP_143985532, located upstream of the Zm00001d030559 gene, encodes a callose synthase that is expressed in various tissues, with the highest expression level in the maize ear primordium. Haplotype analysis indicated that the haplotype B (allele AA) of Zm00001d030559 was positively correlated with ED. The candidate genes and SNPs identified in this study provide crucial insights for future studies on the genetic mechanism of maize ED formation, cloning of ED-related genes, and genetic improvement of ED. These results may help develop important genetic resources for enhancing maize yield through marker-assisted breeding.
Collapse
Affiliation(s)
- Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Li Liu
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Ziwei Li
- Yunnan Dehong Dai and Jingpo Nationality Institute of Agricultural Sciences, Mangshi 678400, China
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Xingfu Yin
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Ruijia Guo
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jing Wang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yudong Zhang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Ranjan Kumar Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| |
Collapse
|
4
|
Shrestha A, Cosenza F, van Inghelandt D, Wu PY, Li J, Casale FA, Weisweiler M, Stich B. The double round-robin population unravels the genetic architecture of grain size in barley. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7344-7361. [PMID: 36094852 PMCID: PMC9730814 DOI: 10.1093/jxb/erac369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Grain number, size and weight primarily determine the yield of barley. Although the genes regulating grain number are well studied in barley, the genetic loci and the causal gene for sink capacity are poorly understood. Therefore, the primary objective of our work was to dissect the genetic architecture of grain size and weight in barley. We used a multi-parent population developed from a genetic cross between 23 diverse barley inbreds in a double round-robin design. Seed size-related parameters such as grain length, grain width, grain area and thousand-grain weight were evaluated in the HvDRR population comprising 45 recombinant inbred line sub-populations. We found significant genotypic variation for all seed size characteristics, and observed 84% or higher heritability across four environments. The quantitative trait locus (QTL) detection results indicate that the genetic architecture of grain size is more complex than previously reported. In addition, both cultivars and landraces contributed positive alleles at grain size QTLs. Candidate genes identified using genome-wide variant calling data for all parental inbred lines indicated overlapping and potential novel regulators of grain size in cereals. Furthermore, our results indicated that sink capacity was the primary determinant of grain weight in barley.
Collapse
Affiliation(s)
- Asis Shrestha
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Francesco Cosenza
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Delphine van Inghelandt
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Po-Ya Wu
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Jinquan Li
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Federico A Casale
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Marius Weisweiler
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | | |
Collapse
|
5
|
Zeng T, Meng Z, Yue R, Lu S, Li W, Li W, Meng H, Sun Q. Genome wide association analysis for yield related traits in maize. BMC PLANT BIOLOGY 2022; 22:449. [PMID: 36127632 PMCID: PMC9490995 DOI: 10.1186/s12870-022-03812-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Understanding the genetic basis of yield related traits contributes to the improvement of grain yield in maize. RESULTS Using 291 excellent maize inbred lines as materials, six yield related traits of maize, including grain yield per plant (GYP), grain length (GL), grain width (GW), kernel number per row (KNR), 100 kernel weight (HKW) and tassel branch number (TBN) were investigated in Jinan, in 2017, 2018 and 2019. The average values of three environments were taken as the phenotypic data of yield related traits, and they were statistically analyzed. Based on 38,683 high-quality SNP markers in the whole genome of the association panel, the MLM with PCA model was used for genome-wide association analysis (GWAS) to obtain 59 significantly associated SNP sites. Moreover, 59 significantly associated SNPs (P < 0.0001) referring to GYP, GL, GW, KNR, HKW and TBN, of which 14 SNPs located in yield related QTLs/QTNs previously reported. A total of 66 candidate genes were identified based on the 59 significantly associated SNPs, of which 58 had functional annotation. CONCLUSIONS Using genome-wide association analysis strategy to identify genetic loci related to maize yield, a total of 59 significantly associated SNP were detected. Those results aid in our understanding of the genetic architecture of maize yield and provide useful SNPs for genetic improvement of maize.
Collapse
Affiliation(s)
- Tingru Zeng
- Maize Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhaodong Meng
- Maize Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Runqing Yue
- Maize Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shouping Lu
- Maize Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenlan Li
- Maize Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wencai Li
- Maize Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hong Meng
- Maize Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qi Sun
- Maize Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
6
|
Genetic Architecture of Grain Yield-Related Traits in Sorghum and Maize. Int J Mol Sci 2022; 23:ijms23052405. [PMID: 35269548 PMCID: PMC8909957 DOI: 10.3390/ijms23052405] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 02/08/2023] Open
Abstract
Grain size, grain number per panicle, and grain weight are crucial determinants of yield-related traits in cereals. Understanding the genetic basis of grain yield-related traits has been the main research object and nodal in crop science. Sorghum and maize, as very close C4 crops with high photosynthetic rates, stress tolerance and large biomass characteristics, are extensively used to produce food, feed, and biofuels worldwide. In this review, we comprehensively summarize a large number of quantitative trait loci (QTLs) associated with grain yield in sorghum and maize. We placed great emphasis on discussing 22 fine-mapped QTLs and 30 functionally characterized genes, which greatly hinders our deep understanding at the molecular mechanism level. This review provides a general overview of the comprehensive findings on grain yield QTLs and discusses the emerging trend in molecular marker-assisted breeding with these QTLs.
Collapse
|
7
|
Wang H, Tang X, Yang X, Fan Y, Xu Y, Li P, Xu C, Yang Z. Exploiting natural variation in crown root traits via genome-wide association studies in maize. BMC PLANT BIOLOGY 2021; 21:346. [PMID: 34301195 PMCID: PMC8299645 DOI: 10.1186/s12870-021-03127-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/12/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Root system architecture (RSA), which is determined by the crown root angle (CRA), crown root diameter (CRD), and crown root number (CRN), is an important factor affecting the ability of plants to obtain nutrients and water from the soil. However, the genetic mechanisms regulating crown root traits in the field remain unclear. METHODS In this study, the CRA, CRD, and CRN of 316 diverse maize inbred lines were analysed in three field trials. Substantial phenotypic variations were observed for the three crown root traits in all environments. A genome-wide association study was conducted using two single-locus methods (GLM and MLM) and three multi-locus methods (FarmCPU, FASTmrMLM, and FASTmrEMMA) with 140,421 SNP. RESULTS A total of 38 QTL including 126 SNPs were detected for CRA, CRD, and CRN. Additionally, 113 candidate genes within 50 kb of the significant SNPs were identified. Combining the gene annotation information and the expression profiles, 3 genes including GRMZM2G141205 (IAA), GRMZM2G138511 (HSP) and GRMZM2G175910 (cytokinin-O-glucosyltransferase) were selected as potentially candidate genes related to crown root development. Moreover, GRMZM2G141205, encoding an AUX/IAA transcriptional regulator, was resequenced in all tested lines. Five variants were identified as significantly associated with CRN in different environments. Four haplotypes were detected based on these significant variants, and Hap1 has more CRN. CONCLUSIONS These findings may be useful for clarifying the genetic basis of maize root system architecture. Furthermore, the identified candidate genes and variants may be relevant for breeding new maize varieties with root traits suitable for diverse environmental conditions.
Collapse
Affiliation(s)
- Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, 225009, China
| | - Xiao Tang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, 225009, China
| | - Xiaoyi Yang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Fan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yang Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Pengcheng Li
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, 225009, China.
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|