1
|
Vadithya AS, Singh I, Rani U, Venadan S, Jajoriya R, Singh M, Oberoi HK, Singh S, Bharadwaj C, Bindra S. Evaluation and identification of advanced inter-specific derivatives from crosses of Cicer arietinum with C. reticulatum and C. echinospermum for agro-morphological, quality traits and disease resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1461280. [PMID: 39399545 PMCID: PMC11466825 DOI: 10.3389/fpls.2024.1461280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024]
Abstract
Inter-specific hybridization is a key strategy in modern crop improvement, aiming to integrate desirable traits from wild species into cultivated backgrounds. This study delves into the evaluation and identification of advanced inter-specific derivatives (IDs) derived from crosses of cultivated chickpea with Cicer reticulatum and C. echinospermum. The primary aim was to incorporate desirable yield enhancement traits, disease resistance, and nutritional quality traits into cultivated chickpea. The IDs were assessed during rabi 2021-22 and 2022-23 in the northern plains zone of India. Significant amount of genetic variability was observed for key agro-morphological traits having high heritability and genetic advance. Superior derivatives were identified for early flowering, high seed yield, and resistance to Ascochyta blight, Botrytis grey mould, and Fusarium wilt. Significant variability for crude protein and total soluble sugar content was also observed among the derivatives. The findings highlight the potential of utilizing wild Cicer species to broaden the genetic base of cultivated chickpea for the development of robust, high-yielding, disease-resistant varieties with improved nutritional traits suitable for diverse environmental conditions. The superior derivatives identified in this study hold promise for future breeding programmes for improving productivity, disease resistance and nutritional quality.
Collapse
Affiliation(s)
- Amool Singh Vadithya
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Upasana Rani
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sreya Venadan
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Rajdeep Jajoriya
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Mohar Singh
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Shimla, India
| | - Harpreet Kaur Oberoi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Shayla Bindra
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
2
|
Şahin ES, Talapov T, Ateş D, Can C, Tanyolaç MB. Genome wide association study of genes controlling resistance to Didymella rabiei Pathotype IV through genotyping by sequencing in chickpeas (Cicer arietinum). Genomics 2023; 115:110699. [PMID: 37597791 DOI: 10.1016/j.ygeno.2023.110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Ascochyta blight (AB) is a major disease in chickpeas (Cicer arietinum L.) that can cause a yield loss of up to 100%. Chickpea germplasm collections at the center of origin offer great potential to discover novel sources of resistance to pests and diseases. Herein, 189 Cicer arietinum samples were genotyped via genotyping by sequencing. This chickpea collection was phenotyped for resistance to an aggressive Turkish Didymella rabiei Pathotype IV isolate. Genome-wide association studies based on different models revealed 19 single nucleotide polymorphism (SNP) associations on chromosomes 1, 2, 3, 4, 7, and 8. Although eight of these SNPs have been previously reported, to the best of our knowledge, the remaining ten were associated with AB resistance for the first time. The regions identified in this study can be addressed in future studies to reveal the genetic mechanism underlying AB resistance and can also be utilized in chickpea breeding programs to improve AB resistance in new chickpea varieties.
Collapse
Affiliation(s)
- Erdem Sefa Şahin
- Republic of Turkey, Ministry of Agriculture and Forestry, Aegean Agricultural Research Institute, Izmir, Turkey; Department of Bioengineering, Molecular Genetic Laboratory, Ege University, Izmir, Turkey
| | - Talap Talapov
- Department of Biology, Gaziantep University, Gaziantep, Turkey
| | - Duygu Ateş
- Department of Bioengineering, Molecular Genetic Laboratory, Ege University, Izmir, Turkey
| | - Canan Can
- Department of Biology, Gaziantep University, Gaziantep, Turkey
| | | |
Collapse
|
3
|
Ali A, Altaf MT, Nadeem MA, Karaköy T, Shah AN, Azeem H, Baloch FS, Baran N, Hussain T, Duangpan S, Aasim M, Boo KH, Abdelsalam NR, Hasan ME, Chung YS. Recent advancement in OMICS approaches to enhance abiotic stress tolerance in legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:952759. [PMID: 36247536 PMCID: PMC9554552 DOI: 10.3389/fpls.2022.952759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
The world is facing rapid climate change and a fast-growing global population. It is believed that the world population will be 9.7 billion in 2050. However, recent agriculture production is not enough to feed the current population of 7.9 billion people, which is causing a huge hunger problem. Therefore, feeding the 9.7 billion population in 2050 will be a huge target. Climate change is becoming a huge threat to global agricultural production, and it is expected to become the worst threat to it in the upcoming years. Keeping this in view, it is very important to breed climate-resilient plants. Legumes are considered an important pillar of the agriculture production system and a great source of high-quality protein, minerals, and vitamins. During the last two decades, advancements in OMICs technology revolutionized plant breeding and emerged as a crop-saving tool in wake of the climate change. Various OMICs approaches like Next-Generation sequencing (NGS), Transcriptomics, Proteomics, and Metabolomics have been used in legumes under abiotic stresses. The scientific community successfully utilized these platforms and investigated the Quantitative Trait Loci (QTL), linked markers through genome-wide association studies, and developed KASP markers that can be helpful for the marker-assisted breeding of legumes. Gene-editing techniques have been successfully proven for soybean, cowpea, chickpea, and model legumes such as Medicago truncatula and Lotus japonicus. A number of efforts have been made to perform gene editing in legumes. Moreover, the scientific community did a great job of identifying various genes involved in the metabolic pathways and utilizing the resulted information in the development of climate-resilient legume cultivars at a rapid pace. Keeping in view, this review highlights the contribution of OMICs approaches to abiotic stresses in legumes. We envisage that the presented information will be helpful for the scientific community to develop climate-resilient legume cultivars.
Collapse
Affiliation(s)
- Amjad Ali
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Muhammad Tanveer Altaf
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hajra Azeem
- Department of Plant Pathology, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Nurettin Baran
- Bitkisel Uretim ve Teknolojileri Bolumu, Uygulamali Bilimler Faku Itesi, Mus Alparslan Universitesi, Mus, Turkey
| | - Tajamul Hussain
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Saowapa Duangpan
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Kyung-Hwan Boo
- Subtropical/Tropical Organism Gene Bank, Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju, South Korea
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, South Korea
| |
Collapse
|
4
|
Kushwah A, Bhatia D, Barmukh R, Singh I, Singh G, Bindra S, Vij S, Chellapilla B, Pratap A, Roorkiwal M, Kumar S, Varshney RK, Singh S. Genetic mapping of QTLs for drought tolerance in chickpea ( Cicer arietinum L.). Front Genet 2022; 13:953898. [PMID: 36061197 PMCID: PMC9437436 DOI: 10.3389/fgene.2022.953898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 01/24/2023] Open
Abstract
Chickpea yield is severely affected by drought stress, which is a complex quantitative trait regulated by multiple small-effect genes. Identifying genomic regions associated with drought tolerance component traits may increase our understanding of drought tolerance mechanisms and assist in the development of drought-tolerant varieties. Here, a total of 187 F8 recombinant inbred lines (RILs) developed from an interspecific cross between drought-tolerant genotype GPF 2 (Cicer arietinum) and drought-sensitive accession ILWC 292 (C. reticulatum) were evaluated to identify quantitative trait loci (QTLs) associated with drought tolerance component traits. A total of 21 traits, including 12 morpho-physiological traits and nine root-related traits, were studied under rainfed and irrigated conditions. Composite interval mapping identified 31 QTLs at Ludhiana and 23 QTLs at Faridkot locations for morphological and physiological traits, and seven QTLs were identified for root-related traits. QTL analysis identified eight consensus QTLs for six traits and five QTL clusters containing QTLs for multiple traits on linkage groups CaLG04 and CaLG06. The identified major QTLs and genomic regions associated with drought tolerance component traits can be introgressed into elite cultivars using genomics-assisted breeding to enhance drought tolerance in chickpea.
Collapse
Affiliation(s)
- Ashutosh Kushwah
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rutwik Barmukh
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gurpreet Singh
- Regional Research Station, Punjab Agricultural University, Faridkot, India
| | - Shayla Bindra
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Suruchi Vij
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | | | - Aditya Pratap
- Crop Improvement Division, ICAR- Indian Institute of Pulses Research, Kanpur, India
| | - Manish Roorkiwal
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Office, Rabat, Morocco
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Murdoch’s Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
5
|
Kushwah A, Bhatia D, Singh G, Singh I, Vij S, Bindra S, Siddique KHM, Nayyar H, Singh S. Phenotypic evaluation of agronomic and root related traits for drought tolerance in recombinant inbred line population derived from a chickpea cultivar ( C. arietinum L.) and its wild relative ( C. reticulatum). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1437-1452. [PMID: 36051229 PMCID: PMC9424481 DOI: 10.1007/s12298-022-01218-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 07/19/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Drought is a major abiotic stress that drastically reduces chickpea yields. The present study was aimed to identify drought-responsive traits in chickpea by screening a recombinant inbred line population derived from an inter-specific cross between drought cultivar of GPF2 (C. arietinum L.) and drought sensitive accession of ILWC292 (C. reticulatum), at two locations in India. Twenty-one traits, including twelve morphological and physiological traits and nine root-related traits were measured under rainfed (drought-stress) and irrigated conditions (no-stress). High genotypic variation was observed among RILs for yield and root traits indicated that selection in these germplasms would be useful in achieving genetic progress. Both correlation and principal component analysis revealed that plant height, number of pods per plant, biomass, 100-seed weight, harvest index, membrane permeability index, and relative leaf water content were significantly correlated with yield under both irrigated and drought stress environments. Root length had significant positive correlations with all root-related traits except root length density in drought-stressed plants. Path analysis and multiple and stepwise regression analyses showed that number of pods per plant, biomass, and harvest index were major contributors to yield under drought stress conditions. Thus, a holistic approach across these analyses identified number of pods per plant, biomass, harvest index, and root length as key traits for improving chickpea yield through indirect selection for developing drought-tolerant cultivars. Overall, on the basis of yield components morphological and root traits, a total of 15 promising RILs were identified for their use in chickpea breeding programs for developing drought tolerant cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01218-z.
Collapse
Affiliation(s)
- Ashutosh Kushwah
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India 141004
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India 141004
| | - Gurpreet Singh
- Regional Research Station, Punjab Agricultural University, Faridkot, India
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India 141004
| | - Suruchi Vij
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India 141004
| | - Shayla Bindra
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India 141004
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | | | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India 141004
| |
Collapse
|
6
|
High-Density Linkage Mapping and Identification of Quantitative Trait Loci Associated with Powdery Mildew Resistance in Flowering Dogwood (Cornus florida). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Flowering dogwood (Cornus florida L.) is a popular, spring-blooming ornamental tree native to the eastern United States. The species is in general very susceptible to powdery mildew caused by Erysiphe pulchra, which disfigures leaves, decreases growth, and negatively affects flowering. Breeding for resistance has been recognized as an ideal strategy for controlling the disease in C. florida, but efforts have been hindered by the rarity of PM resistance in available germplasm and knowledge of its genetic control. In this study, we mapped quantitative trait loci (QTL) associated with PM resistance/tolerance in two full sibling populations segregating for PM response: Rutgers H4AR15P25 (P25) × Rutgers H4AR15R28 (P28) (n = 195) and Rutgers H4AR15R25 × Rutgers H4AR15P35 (P35) (n = 83). High-density genetic linkage maps were constructed for the mapping populations using double digest restriction-site associated DNA sequencing-derived single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs). The P25 × P28 map consisted of 2265 markers, spanning 1520 cM and 11 linkage groups (LGs) with an average marker spacing of 0.69 cM. The P25 × P35 map was constructed with 1788 markers, spanning 1256 cM and 11 LGs, with an average marker spacing of 0.72 cM. The maps had 604 markers in common and exhibited excellent collinearity. Through multiple QTL model mapping, one major QTL (LOD = 11.36 and R2 = 58.9%) was identified in P25 × P35. Furthermore, a minor QTL (LOD = 3.30 and R2 = 7.8%) was detected in P25 × P28. Due to their proximity onLG3, these QTL may be designating the same locus or tightly linked loci. The negative additive effects of both QTL signify that the PM susceptible male parents were contributing susceptibility alleles to the progeny. This is the first report of QTL associated with PM response on LG3 in C. florida and lays the groundwork for the development of marker-assisted selection for PM resistance in C. florida breeding programs.
Collapse
|
7
|
Alo F, Rani AR, Baum M, Singh S, Kehel Z, Rani U, Udupa S, Al-Sham’aa K, Alsamman AM, Istanbuli T, Attar B, Hamwieh A, Amri A. Novel Genomic Regions Linked to Ascochyta Blight Resistance in Two Differentially Resistant Cultivars of Chickpea. FRONTIERS IN PLANT SCIENCE 2022; 13:762002. [PMID: 35548283 PMCID: PMC9083910 DOI: 10.3389/fpls.2022.762002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Ascochyta blight (AB), caused by the fungal pathogen Ascochyta rabiei, is a devastating foliar disease of chickpea (Cicer arietinum L.). The genotyping-by-sequencing (GBS)-based approach was deployed for mapping QTLs associated with AB resistance in chickpea in two recombinant inbred line populations derived from two crosses (AB3279 derived from ILC 1929 × ILC 3279 and AB482 derived from ILC 1929 × ILC 482) and tested in six different environments. Twenty-one different genomic regions linked to AB resistance were identified in regions CalG02 and CalG04 in both populations AB3279 and AB482. These regions contain 1,118 SNPs significantly associated with AB resistance (p ≤ 0.001), which explained 11.2-39.3% of the phenotypic variation (PVE). Nine of the AB resistance-associated genomic regions were newly detected in this study, while twelve regions were known from previous AB studies. The proposed physical map narrows down AB resistance to consistent genomic regions identified across different environments. Gene ontology (GO) assigned these QTLs to 319 genes, many of which were associated with stress and disease resistance, and with most important genes belonging to resistance gene families such as leucine-rich repeat (LRR) and transcription factor families. Our results indicate that the flowering-associated gene GIGANTEA is a possible key factor in AB resistance in chickpea. The results have identified AB resistance-associated regions on the physical genetic map of chickpea and allowed for the identification of associated markers that will help in breeding of AB-resistant varieties.
Collapse
Affiliation(s)
- Fida Alo
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Anupalli Roja Rani
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, India
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Zakaria Kehel
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Upasana Rani
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sripada Udupa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Khaled Al-Sham’aa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Alsamman M. Alsamman
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agriculture Genetic Engineering Research Institute, Giza, Egypt
| | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Basem Attar
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Ahmed Amri
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| |
Collapse
|
8
|
Jha UC, Sharma KD, Nayyar H, Parida SK, Siddique KHM. Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes. Int J Mol Sci 2022; 23:ijms23042217. [PMID: 35216334 PMCID: PMC8880496 DOI: 10.3390/ijms23042217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Grain legumes are a key food source for ensuring global food security and sustaining agriculture. However, grain legume production is challenged by growing disease incidence due to global climate change. Ascochyta blight (AB) is a major disease, causing substantial yield losses in grain legumes worldwide. Harnessing the untapped reserve of global grain legume germplasm, landraces, and crop wild relatives (CWRs) could help minimize yield losses caused by AB infection in grain legumes. Several genetic determinants controlling AB resistance in various grain legumes have been identified following classical genetic and conventional breeding approaches. However, the advent of molecular markers, biparental quantitative trait loci (QTL) mapping, genome-wide association studies, genomic resources developed from various genome sequence assemblies, and whole-genome resequencing of global germplasm has revealed AB-resistant gene(s)/QTL/genomic regions/haplotypes on various linkage groups. These genomics resources allow plant breeders to embrace genomics-assisted selection for developing/transferring AB-resistant genomic regions to elite cultivars with great precision. Likewise, advances in functional genomics, especially transcriptomics and proteomics, have assisted in discovering possible candidate gene(s) and proteins and the underlying molecular mechanisms of AB resistance in various grain legumes. We discuss how emerging cutting-edge next-generation breeding tools, such as rapid generation advancement, field-based high-throughput phenotyping tools, genomic selection, and CRISPR/Cas9, could be used for fast-tracking AB-resistant grain legumes to meet the increasing demand for grain legume-based protein diets and thus ensuring global food security.
Collapse
Affiliation(s)
- Uday C. Jha
- Indian Institute of Pulses Research, Kanpur 208024, India
- Correspondence: (U.C.J.); (K.H.M.S.)
| | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur 176062, India;
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh 0172, India;
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi 110001, India;
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
- Correspondence: (U.C.J.); (K.H.M.S.)
| |
Collapse
|
9
|
Kushwah A, Bhatia D, Singh I, Thudi M, Singh G, Bindra S, Vij S, Gill BS, Bharadwaj C, Singh S, Varshney RK. Identification of stable heat tolerance QTLs using inter-specific recombinant inbred line population derived from GPF 2 and ILWC 292. PLoS One 2021; 16:e0254957. [PMID: 34370732 PMCID: PMC8352073 DOI: 10.1371/journal.pone.0254957] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
Heat stress during reproductive stages has been leading to significant yield losses in chickpea (Cicer arietinum L.). With an aim of identifying the genomic regions or QTLs responsible for heat tolerance, 187 F8 recombinant inbred lines (RILs) derived from the cross GPF 2 (heat tolerant) × ILWC 292 (heat sensitive) were evaluated under late-sown irrigated (January-May) and timely-sown irrigated environments (November-April) at Ludhiana and Faridkot in Punjab, India for 13 heat tolerance related traits. The pooled ANOVA for both locations for the traits namely days to germination (DG), days to flowering initiation (DFI), days to 50% flowering (DFF), days to 100% flowering (DHF), plant height (PH), pods per plant (NPP), biomass (BIO), grain yield (YLD), 100-seed weight (HSW), harvest index (HI), membrane permeability index (MPI), relative leaf water content (RLWC) and pollen viability (PV)) showed a highly significant difference in RILs. The phenotyping data coupled with the genetic map comprising of 1365 ddRAD-Seq based SNP markers were used for identifying the QTLs for heat tolerance. Composite interval mapping provided a total of 28 and 23 QTLs, respectively at Ludhiana and Faridkot locations. Of these, 13 consensus QTLs for DG, DFI, DFF, DHF, PH, YLD, and MPI have been identified at both locations. Four QTL clusters containing QTLs for multiple traits were identified on the same genomic region at both locations. Stable QTLs for days to flowering can be one of the major factors for providing heat tolerance as early flowering has an advantage of more seed setting due to a comparatively longer reproductive period. Identified QTLs can be used in genomics-assisted breeding to develop heat stress-tolerant high yielding chickpea cultivars.
Collapse
Affiliation(s)
- Ashutosh Kushwah
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Gurpreet Singh
- Regional Research Station, Faridkot, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Shayla Bindra
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Suruchi Vij
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - B. S. Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Institute of Agricultural Research (IARI), New Delhi, India
| | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|