1
|
Zhang N, Zhu M, Qiu Y, Fang Z, Zhuang M, Zhang Y, Lv H, Ji J, Hou X, Yang L, Wang Y. Rapid introgression of the clubroot resistance gene CRa into cabbage skeleton inbred lines through marker assisted selection. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:19. [PMID: 39866858 PMCID: PMC11754771 DOI: 10.1007/s11032-024-01532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a globally pervasive soil-borne disease that poses a significant challenge primarily in cruciferous crops. However, the scarcity of resistant materials and the intricate genetic mechanisms within cabbage present major obstacles to clubroot resistance (CR) breeding. In our previous research, we developed an Ogura CMS cabbage variety, "17CR3", which harbors the CRa gene, crucial for CR. The fertility of this variety can be restored through crossing with an Ogura cytoplasmic male sterile (CMS) restore line. In the current investigation, offspring from fertile hybrids were utilized as donor parents in backcrossing with five cabbage inbred lines, with the goal of introducing the CRa gene into elite cabbage cultivars possessing superior agronomic traits. Following five years of continuous field selection combined with molecular marker-assisted selection (MAS), we successfully developed BC4 individuals exhibiting excellent agronomic traits and diverse genetic backgrounds. Whole-genome resequencing revealed a mere 54,213 SNP differences between the genetic makeup of BC4 individuals and their recurrent parents. The results of inoculation identification demonstrated a high degree of co-segregation between the CRa-specific marker KBrH129J18 and resistance to Plasmodiophora brassicae in both inoculated resistant seedlings and cabbage plants harboring CRa across three distinct regions of China. Additionally, results from Semi-Quantitative RT-PCR experiments revealed minimal to no expression of CRa in the majority of susceptible individuals, underscoring the pivotal role of CRa in conferring CR. Moreover, BC3 individuals resulting from the cross between "SK308" and "18CR3", which carried CRa, exhibited resistance to clubroot under the natural conditions of disease-prone fields in Wulong, China. In summary, through a combination of traditional breeding methods and MAS, we successfully bred five cabbage inbred lines carrying the CRa gene from diverse genetic backgrounds, thereby establishing a robust foundation for their integration into breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01532-2.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Mingzhao Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- State Key Laboratory of Vegetable Biobreeding, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097 China
| | - Yuting Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 P.R. China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
2
|
Baloch A, Shah N, Idrees F, Zhou X, Gan L, Atem JEC, Zhou Y, Piao Z, Chen P, Zhan Z, Zhang C. Pyramiding of triple Clubroot resistance loci conferred superior resistance without negative effects on agronomic traits in Brassica napus. PHYSIOLOGIA PLANTARUM 2024; 176:e14414. [PMID: 38956798 DOI: 10.1111/ppl.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Clubroot disease caused by Plasmodiophora brassicae is becoming a serious threat to rapeseed (Brassica napus) production worldwide. Breeding resistant varieties using CR (clubroot resistance) loci is the most promising solution. Using marker-assisted selection and speed-breeding technologies, we generated Brassica napus materials in homozygous or heterozygous states using CRA3.7, CRA08.1, and CRA3.2 loci in the elite parental line of the Zhongshuang11 background. We developed three elite lines with two CR loci in different combinations and one line with three CR loci at the homozygous state. In our study, we used six different clubroot strains (Xinmin, Lincang, Yuxi, Chengdu, Chongqing, and Jixi) which are categorized into three groups based on our screening results. The newly pyramided lines with two or more CR loci displayed better disease resistance than the parental lines carrying single CR loci. There is an obvious gene dosage effect between CR loci and disease resistance levels. For example, pyramided lines with triple CR loci in the homozygous state showed superior resistance for all pathogens tested. Moreover, CR loci in the homozygous state are better on disease resistance than the heterozygous state. More importantly, no negative effect was observed on agronomic traits for the presence of multiple CR loci in the same background. Overall, these data suggest that the pyramiding of triple clubroot resistance loci conferred superior resistance with no negative effects on agronomic traits in Brassica napus.
Collapse
Affiliation(s)
- Amanullah Baloch
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nadil Shah
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fahad Idrees
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueqing Zhou
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longcai Gan
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jalal Eldeen Chol Atem
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanwei Zhou
- Yichang Academy of Agricultural Science, Yichang, China
| | | | - Peng Chen
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Chunyu Zhang
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Wen R, Song T, Gossen BD, Peng G. Comparative transcriptome analysis of canola carrying a single vs stacked resistance genes against clubroot. FRONTIERS IN PLANT SCIENCE 2024; 15:1358605. [PMID: 38835867 PMCID: PMC11148231 DOI: 10.3389/fpls.2024.1358605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
Pyramiding resistance genes may expand the efficacy and scope of a canola variety against clubroot (Plasmodiophora brassicae), a serious threat to canola production in western Canada. However, the mechanism(s) of multigenic resistance, especially the potential interaction among clubroot resistance (CR) genes, are not well understood. In this study, transcriptome was compared over three canola (Brassica napus L.) inbred/hybrid lines carrying a single CR gene in chromosome A03 (CRaM, Line 16) or A08 (Crr1rutb, Line 20), and both genes (CRaM+Crr1rutb, Line 15) inoculated with a field population (L-G2) of P. brassicae pathotype X, a new variant found in western Canada recently. The line16 was susceptible, while lines 15 and 20 were partially resistant. Functional annotation identified differential expression of genes (DEGs) involved in biosynthetic processes responsive to stress and regulation of cellular process; The Venn diagram showed that the partially resistant lines 15 and 20 shared 1,896 differentially expressed genes relative to the susceptible line 16, and many of these DEGs are involved in defense responses, activation of innate immunity, hormone biosynthesis and programmed cell death. The transcription of genes involved in Pathogen-Associated Molecular Pattern (PAMP)-Triggered and Effector-Triggered Immunity (PTI and ETI) was particularly up-regulated, and the transcription level was higher in line 15 (CRaM + Crr1rutb) than in line 20 (Crr1rutb only) for most of the DEGs. These results indicated that the partial resistance to the pathotype X was likely conferred by the CR gene Crr1rutb for both lines 15 and 20 that functioned via the activation of both PTI and ETI signaling pathways. Additionally, these two CR genes might have synergistic effects against the pathotype X, based on the higher transcription levels of defense-related DEGs expressed by inoculated line 15, highlighting the benefit of gene stacking for improved canola resistance as opposed to a single CR gene alone.
Collapse
Affiliation(s)
- Rui Wen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon SK, Canada
| | - Tao Song
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon SK, Canada
| | - Bruce D Gossen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon SK, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon SK, Canada
| |
Collapse
|
4
|
Tonu NN, Wen R, Song T, Guo X, Murphy LA, Gossen BD, Yu F, Peng G. Canola with Stacked Genes Shows Moderate Resistance and Resilience against a Field Population of Plasmodiophora brassicae (Clubroot) Pathotype X. PLANTS (BASEL, SWITZERLAND) 2023; 12:726. [PMID: 36840074 PMCID: PMC9960129 DOI: 10.3390/plants12040726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Genetic resistance is a cornerstone for managing clubroot (Plasmodiophora brassicae). However, when used repeatedly, a clubroot resistance (CR) gene can be broken rapidly. In this study, canola inbred/hybrid lines carrying one or two CR genes (Rcr1/CRaM and Crr1rutb) were assessed against P. brassicae pathotype X by repeated exposure to the same inoculum source under a controlled environment. Lines carrying two CR genes, either Rcr1 + Crr1rutb or CRaM + Crr1rutb, showed partial resistance. Selected lines were inoculated with a field pathotype X population (L-G3) at 5 × 106 resting spores/g soil, and all clubs were returned to the soil they came from six weeks after inoculation. The planting was repeated for five cycles, with diseased roots being returned to the soil after each cycle. The soil inoculum was quantified using qPCR before each planting cycle. All lines with a single CR gene were consistently susceptible, maintaining high soil inoculum levels over time. The lines carrying two CR genes showed much lower clubroot severity, resulting in a 10-fold decline in soil inoculum. These results showed that the CR-gene stacking provided moderate resistance against P. brassicae pathotype X, which may also help reduce the pathogen inoculum buildup in soil.
Collapse
Affiliation(s)
- Nazmoon Naher Tonu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Rui Wen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Tao Song
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Xiaowei Guo
- Pest Surveillance Initiative, 5A-1325 Markham Road, Winnipeg, MB R3T 4J6, Canada
| | - Lee Anne Murphy
- Pest Surveillance Initiative, 5A-1325 Markham Road, Winnipeg, MB R3T 4J6, Canada
| | - Bruce Dean Gossen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
5
|
Germplasm Enhancement and Identification of Loci Conferring Resistance against Plasmodiophora brassicae in Broccoli. Genes (Basel) 2022; 13:genes13091600. [PMID: 36140766 PMCID: PMC9498593 DOI: 10.3390/genes13091600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
In order to breed broccoli and other Brassica materials to be highly resistant to clubroot disease, 41 Brassicaceae varieties were developed and identified between 2020 and 2021. Seven known clubroot genes were used for screening these materials. In addition, the resistant and susceptible broccoli cultivars were designed for observing their differences in the infection process with Plasmodiophora brassicae. The results showed that 90% of total materials had carried more than two clubroot resistance genes: one material carried two disease resistance genes, four materials carried seven genes for clubroot resistance, two materials carried six genes for clubroot resistance, and in total 32% of these materials carried five genes for clubroot resistance. As a result, several new genotypes of Brassicaceae germplasm were firstly created and obtained based on distant hybridization and identification of loci conferring resistance against Plasmodiophora brassicae in this study. We found and revealed that similar infection models of Plasmodiophora brassicae occurred in susceptible and resistant cultivars of broccoli, but differences in infection efficiency of Plasmodiophora brassicae also existed in both materials. For resistant broccoli plants, a small number of conidia formed in the root hair, and only a few spores could enter the cortex without forming sporangia while sporangia could form in susceptible plants. Our study could provide critical Brassica materials for breeding resistant varieties and new insight into understanding the mechanism of plant resistance.
Collapse
|
6
|
Shaw RK, Shen Y, Yu H, Sheng X, Wang J, Gu H. Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. Int J Mol Sci 2022; 23:9280. [PMID: 36012543 PMCID: PMC9409056 DOI: 10.3390/ijms23169280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brassica oleracea is an agronomically important species of the Brassicaceae family, including several nutrient-rich vegetables grown and consumed across the continents. But its sustainability is heavily constrained by a range of destructive pathogens, among which, clubroot disease, caused by a biotrophic protist Plasmodiophora brassicae, has caused significant yield and economic losses worldwide, thereby threatening global food security. To counter the pathogen attack, it demands a better understanding of the complex phenomenon of Brassica-P. brassicae pathosystem at the physiological, biochemical, molecular, and cellular levels. In recent years, multiple omics technologies with high-throughput techniques have emerged as successful in elucidating the responses to biotic and abiotic stresses. In Brassica spp., omics technologies such as genomics, transcriptomics, ncRNAomics, proteomics, and metabolomics are well documented, allowing us to gain insights into the dynamic changes that transpired during host-pathogen interactions at a deeper level. So, it is critical that we must review the recent advances in omics approaches and discuss how the current knowledge in multi-omics technologies has been able to breed high-quality clubroot-resistant B. oleracea. This review highlights the recent advances made in utilizing various omics approaches to understand the host resistance mechanisms adopted by Brassica crops in response to the P. brassicae attack. Finally, we have discussed the bottlenecks and the way forward to overcome the persisting knowledge gaps in delivering solutions to breed clubroot-resistant Brassica crops in a holistic, targeted, and precise way.
Collapse
Affiliation(s)
| | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
7
|
Hatakeyama K, Yuzawa S, Tonosaki K, Takahata Y, Matsumoto S. Allelic variation of a clubroot resistance gene ( Crr1a) in Japanese cultivars of Chinese cabbage ( Brassica rapa L.). BREEDING SCIENCE 2022; 72:115-123. [PMID: 36275933 PMCID: PMC9522534 DOI: 10.1270/jsbbs.21040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/24/2021] [Indexed: 05/08/2023]
Abstract
Clubroot resistance (CR) is an important trait in Chinese cabbage breeding worldwide. Although Crr1a, the gene responsible for clubroot-resistance, has been cloned and shown to encode the NLR protein, its allelic variation and molecular function remain unknown. Here, we investigated the sequence variation and function of three Crr1a alleles cloned from six CR F1 cultivars of Chinese cabbage. Gain-of-function analysis revealed that Crr1aKinami90_a isolated from the cv. 'Kinami 90' conferred clubroot resistance as observed for Crr1aG004 . Because two susceptible alleles commonly lacked 172 amino acids in the C-terminal region, we investigated clubroot resistance in transgenic Arabidopsis harboring the chimeric Crr1a, in which 172 amino acids of the functional alleles were fused to the susceptible alleles. The fusion of the C-terminal region to the susceptible alleles restored resistance, indicating that their susceptibility was caused by the lack of the C-terminus. We developed DNA markers to detect the two functional Crr1a alleles, and demonstrated that the functional Crr1a alleles were frequently found in European fodder turnips, whereas they were rarely introduced into Japanese CR cultivars of Chinese cabbage. These results would contribute to CR breeding via marker-assisted selection and help our understanding of the molecular mechanisms underlying clubroot resistance.
Collapse
Affiliation(s)
- Katsunori Hatakeyama
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Institute of Vegetable and Floriculture Science, NARO, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8519, Japan
- Corresponding author (e-mail: )
| | - Shota Yuzawa
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Kaoru Tonosaki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yoshihito Takahata
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Satoru Matsumoto
- Institute of Vegetable and Floriculture Science, NARO, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8519, Japan
| |
Collapse
|
8
|
Kawasaki M, Ohara T, Ishida M, Takahata Y, Hatakeyama K. Development of novel clubroot resistant rapeseed lines ( Brassica napus L.) effective against Japanese field isolates by marker assisted selection. BREEDING SCIENCE 2021; 71:528-537. [PMID: 35087317 PMCID: PMC8784349 DOI: 10.1270/jsbbs.21014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/16/2021] [Indexed: 06/14/2023]
Abstract
Clubroot is an important disease infectible to cruciferous plants and a major threat to rapeseed production in Japan. However, no clubroot resistant rapeseed cultivars have been released. We surveyed pathotype variation of six isolates collected from rapeseed fields and found they were classified as pathotype groups 2 and 4 using Japanese F1 Chinese cabbage cultivars. We produced the resynthesized clubroot resistant Brassica napus harboring two resistant loci, Crr1 and Crr2, by interspecific crossing and developed resistant rapeseed lines for southern and northern regions by marker-assisted selection and backcrossing. We improved the DNA marker for erucic acid content to remove linkage drag between Crr1 and high erucic acid content and successfully selected lines with clubroot resistance and zero erucic acid for northern regions. A novel line, 'Tohoku No. 106', suitable for southern regions showed stable resistance against all six isolates and high performance in infested fields. We conclude that Crr1 and Crr2 are important genes for CR rapeseed breeding and marker-assisted selection is effective in improving clubroot resistance.
Collapse
Affiliation(s)
- Mitsuyo Kawasaki
- Tohoku Agricultural Research Center, NARO, 4 Akahira, Shimo-kuriyagawa, Morioka, Iwate 020-0198, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Takayoshi Ohara
- Institute of Vegetable and Floriculture Science, NARO, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Masahiko Ishida
- Institute of Vegetable and Floriculture Science, NARO, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Yoshihito Takahata
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Katsunori Hatakeyama
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
9
|
MiR1885 Regulates Disease Tolerance Genes in Brassica rapa during Early Infection with Plasmodiophora brassicae. Int J Mol Sci 2021; 22:ijms22179433. [PMID: 34502341 PMCID: PMC8430504 DOI: 10.3390/ijms22179433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
Clubroot caused by Plasmodiophora brassicae is a severe disease of cruciferous crops that decreases crop quality and productivity. Several clubroot resistance-related quantitative trait loci and candidate genes have been identified. However, the underlying regulatory mechanism, the interrelationships among genes, and how genes are regulated remain unexplored. MicroRNAs (miRNAs) are attracting attention as regulators of gene expression, including during biotic stress responses. The main objective of this study was to understand how miRNAs regulate clubroot resistance-related genes in P. brassicae-infected Brassica rapa. Two Brassica miRNAs, Bra-miR1885a and Bra-miR1885b, were revealed to target TIR-NBS genes. In non-infected plants, both miRNAs were expressed at low levels to maintain the balance between plant development and basal immunity. However, their expression levels increased in P. brassicae-infected plants. Both miRNAs down-regulated the expression of the TIR-NBS genes Bra019412 and Bra019410, which are located at a clubroot resistance-related quantitative trait locus. The Bra-miR1885-mediated down-regulation of both genes was detected for up to 15 days post-inoculation in the clubroot-resistant line CR Shinki and in the clubroot-susceptible line 94SK. A qRT-PCR analysis revealed Bra019412 expression was negatively regulated by miR1885. Both Bra019412 and Bra019410 were more highly expressed in CR Shinki than in 94SK; the same expression pattern was detected in multiple clubroot-resistant and clubroot-susceptible inbred lines. A 5′ rapid amplification of cDNA ends analysis confirmed the cleavage of Bra019412 by Bra-miR1885b. Thus, miR1885s potentially regulate TIR-NBS gene expression during P. brassicae infections of B. rapa.
Collapse
|
10
|
Kopec PM, Mikolajczyk K, Jajor E, Perek A, Nowakowska J, Obermeier C, Chawla HS, Korbas M, Bartkowiak-Broda I, Karlowski WM. Local Duplication of TIR-NBS-LRR Gene Marks Clubroot Resistance in Brassica napus cv. Tosca. FRONTIERS IN PLANT SCIENCE 2021; 12:639631. [PMID: 33936130 PMCID: PMC8082685 DOI: 10.3389/fpls.2021.639631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae infection, is a disease of growing importance in cruciferous crops, including oilseed rape (Brassica napus). The affected plants exhibit prominent galling of the roots that impairs their capacity for water and nutrient uptake, which leads to growth retardation, wilting, premature ripening, or death. Due to the scarcity of effective means of protection against the pathogen, breeding of resistant varieties remains a crucial component of disease control measures. The key aspect of the breeding process is the identification of genetic factors associated with variable response to the pathogen exposure. Although numerous clubroot resistance loci have been described in Brassica crops, continuous updates on the sources of resistance are necessary. Many of the resistance genes are pathotype-specific, moreover, resistance breakdowns have been reported. In this study, we characterize the clubroot resistance locus in the winter oilseed rape cultivar "Tosca." In a series of greenhouse experiments, we evaluate the disease severity of P. brassicae-challenged "Tosca"-derived population of doubled haploids, which we genotype with Brassica 60 K array and a selection of SSR/SCAR markers. We then construct a genetic map and narrow down the resistance locus to the 0.4 cM fragment on the A03 chromosome, corresponding to the region previously described as Crr3. Using Oxford Nanopore long-read genome resequencing and RNA-seq we review the composition of the locus and describe a duplication of TIR-NBS-LRR gene. Further, we explore the transcriptomic differences of the local genes between the clubroot resistant and susceptible, inoculated and control DH lines. We conclude that the duplicated TNL gene is a promising candidate for the resistance factor. This study provides valuable resources for clubroot resistance breeding programs and lays a foundation for further functional studies on clubroot resistance.
Collapse
Affiliation(s)
- Piotr M. Kopec
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Poznan, Poland
| | - Katarzyna Mikolajczyk
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Ewa Jajor
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Agnieszka Perek
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Joanna Nowakowska
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Christian Obermeier
- Department of Plant Breeding, Justus-Liebig-Universitaet Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus-Liebig-Universitaet Giessen, Giessen, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marek Korbas
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Iwona Bartkowiak-Broda
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Poznan, Poland
| |
Collapse
|
11
|
Hasan J, Megha S, Rahman H. Clubroot in Brassica: recent advances in genomics, breeding, and disease management. Genome 2021; 64:735-760. [PMID: 33651640 DOI: 10.1139/gen-2020-0089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clubroot disease, caused by Plasmodiophora brassicae, affects Brassica oilseed and vegetable production worldwide. This review is focused on various aspects of clubroot disease and its management, including understanding the pathogen and resistance in the host plants. Advances in genetics, molecular biology techniques, and omics research have helped to identify several major loci, QTL, and genes from the Brassica genomes involved in the control of clubroot resistance. Transcriptomic studies have helped to extend our understanding of the mechanism of infection by the pathogen and the molecular basis of resistance/susceptibility in the host plants. A comprehensive understanding of the clubroot disease and host resistance would allow developing a better strategy by integrating the genetic resistance with cultural practices to manage this disease from a long-term perspective.
Collapse
Affiliation(s)
- Jakir Hasan
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Swati Megha
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
12
|
Fredua-Agyeman R, Jiang J, Hwang SF, Strelkov SE. QTL Mapping and Inheritance of Clubroot Resistance Genes Derived From Brassica rapa subsp. rapifera (ECD 02) Reveals Resistance Loci and Distorted Segregation Ratios in Two F 2 Populations of Different Crosses. FRONTIERS IN PLANT SCIENCE 2020; 11:899. [PMID: 32719696 PMCID: PMC7348664 DOI: 10.3389/fpls.2020.00899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/02/2020] [Indexed: 05/24/2023]
Abstract
In this study, Brassica rapa subsp. rapifera (ECD 02) which exhibits broad-spectrum resistance to many Canadian Plasmodiophora brassicae isolates was crossed with two clubroot-susceptible B. rapa accessions to produce two F 2 populations. The F 2 plants were screened against P. brassicae pathotypes 3H, 5X, and 5G. The Chi-square goodness of fit test showed that the vast majority (≈75%) of the crosses that produced the F 2 populations showed segregation ratios of 9R:7S, 7R:9S, 13R:3S, 3R:13S, 5R:11S, 11R:5S, and 1R:15S. These were modifications of the 15R:1S ratio expected for the inheritance of two dominant major clubroot resistance (CR) genes from ECD 02. The distorted segregation ratios suggest that the two resistance genes are on different chromosomes and that two genes interact in an epistatic manner to confer resistance. Genotyping was conducted with 144 PCR-based markers in the two F 2 populations. Linkage and QTL analysis with the polymorphic markers identified two QTLs on chromosome A03 to be associated with resistance to P. brassicae pathotypes 5X and 5G in Popl#1 while only the second QTL on chromosome A03 was associated with resistance to pathotypes 5X and 5G in Popl#2. The QTLs clustered in genomic regions on the A03 chromosome of B. rapa where the CRa/CRb Kato gene(s) are mapped. In addition, the Crr1 gene on the A08 chromosome of B. rapa was detected in the two F 2 populations. Therefore, the phenotypic and molecular data confirm the existence of two CR genes in ECD 02. This is the first study that shows that major dominant genes in Brassica interact in a non-additive manner to confer resistance to different P. brassicae pathotypes. Key Message: This study provides knowledge on the inheritance and type of gene action for clubroot resistance derived from Brassica rapa subsp. rapifera (ECD 02). The results indicated that duplicate recessive and recessive suppression epistatic interactions, digenic additivity and complementary gene action between the CRa/CRb Kato gene(s) on the A03 and the Crr1 gene on the A08 chromosome of B. rapa controlled clubroot resistance to P. brassicae pathotypes 3H, 5X and 5G.
Collapse
|
13
|
Genetics of Clubroot and Fusarium Wilt Disease Resistance in Brassica Vegetables: The Application of Marker Assisted Breeding for Disease Resistance. PLANTS 2020; 9:plants9060726. [PMID: 32526827 PMCID: PMC7355935 DOI: 10.3390/plants9060726] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 01/29/2023]
Abstract
The genus Brassica contains important vegetable crops, which serve as a source of oil seed, condiments, and forages. However, their production is hampered by various diseases such as clubroot and Fusarium wilt, especially in Brassica vegetables. Soil-borne diseases are difficult to manage by traditional methods. Host resistance is an important tool for minimizing disease and many types of resistance (R) genes have been identified. More than 20 major clubroot (CR) disease-related loci have been identified in Brassica vegetables and several CR-resistant genes have been isolated by map-based cloning. Fusarium wilt resistant genes in Brassica vegetables have also been isolated. These isolated R genes encode the toll-interleukin-1 receptor/nucleotide-binding site/leucine-rice-repeat (TIR-NBS-LRR) protein. DNA markers that are linked with disease resistance allele have been successfully applied to improve disease resistance through marker-assisted selection (MAS). In this review, we focused on the recent status of identifying clubroot and Fusarium wilt R genes and the feasibility of using MAS for developing disease resistance cultivars in Brassica vegetables.
Collapse
|
14
|
Ren W, Li Z, Han F, Zhang B, Li X, Fang Z, Yang L, Zhuang M, Lv H, Liu Y, Wang Y, Yu H, Zhang Y. Utilization of Ogura CMS germplasm with the clubroot resistance gene by fertility restoration and cytoplasm replacement in Brassica oleracea L. HORTICULTURE RESEARCH 2020; 7:61. [PMID: 32377352 PMCID: PMC7193625 DOI: 10.1038/s41438-020-0282-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/25/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Clubroot disease, a major plant root disease caused by Plasmodiophora brassicae, has become one of the most destructive diseases among cultivated cruciferous vegetables. However, clubroot-resistant Brassica oleracea materials are rare. A few clubroot-resistant cabbage varieties are available on the market, but all are Ogura cytoplasmic male sterile (CMS) types. Therefore, in this study, to reutilize the clubroot-resistant Ogura CMS germplasm of cabbage, a new fertility-restored Ogura CMS material, 16Q2-11, was used as a bridge to transfer the clubroot resistance (CR) gene from the Ogura CMS cytoplasm to the normal cytoplasm by a two-step method (a fertility restoration and cytoplasm replacement method). In the first cross for fertility restoration of Ogura CMS clubroot-resistant cabbage (FRCRC), 16Q2-11 was used as a restorer to cross with Ogura CMS materials containing the CR gene CRb2. Eleven Rfo-positive progenies were generated, of which four contained CRb2: F8-514, F8-620, F8-732 and F8-839. After inoculation with race 4 of P. brassicae, these four CRb2-positive individuals showed resistance. Furthermore, F8-514 and F8-839 were then used as male parents in the second cross of FRCRC to cross with cabbage inbred lines, resulting in the successful introgression of the CRb2 gene into the inbred lines. All offspring produced from this step of cross, which had a normal cytoplasm, showed a high resistance to race 4 of P. brassicae and could be utilized for the breeding of clubroot-resistant cabbage varieties in the future. This is the first time that the Ogura CMS restorer has been used to restore the fertility of Ogura CMS clubroot-resistant cabbages, which could improve germplasm diversity in cabbage and provide a reference method for using CMS germplasm in Brassica crops.
Collapse
Affiliation(s)
- Wenjing Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081 China
| | - Zhiyuan Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081 China
| | - Fengqing Han
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081 China
| | - Bin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081 China
| | - Xing Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081 China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081 China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081 China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081 China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081 China
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081 China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081 China
| | - Hailong Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081 China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081 China
| |
Collapse
|
15
|
Lv H, Fang Z, Yang L, Zhang Y, Wang Y. An update on the arsenal: mining resistance genes for disease management of Brassica crops in the genomic era. HORTICULTURE RESEARCH 2020; 7:34. [PMID: 32194970 PMCID: PMC7072071 DOI: 10.1038/s41438-020-0257-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 05/18/2023]
Abstract
Brassica species include many economically important crops that provide nutrition and health-promoting substances to humans worldwide. However, as with all crops, their production is constantly threatened by emerging viral, bacterial, and fungal diseases, whose incidence has increased in recent years. Traditional methods of control are often costly, present limited effectiveness, and cause environmental damage; instead, the ideal approach is to mine and utilize the resistance genes of the Brassica crop hosts themselves. Fortunately, the development of genomics, molecular genetics, and biological techniques enables us to rapidly discover and apply resistance (R) genes. Herein, the R genes identified in Brassica crops are summarized, including their mapping and cloning, possible molecular mechanisms, and application in resistance breeding. Future perspectives concerning how to accurately discover additional R gene resources and efficiently utilize these genes in the genomic era are also discussed.
Collapse
Affiliation(s)
- Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun South Street, Beijing, 100081 China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun South Street, Beijing, 100081 China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun South Street, Beijing, 100081 China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun South Street, Beijing, 100081 China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun South Street, Beijing, 100081 China
| |
Collapse
|
16
|
Fredua-Agyeman R, Yu Z, Hwang SF, Strelkov SE. Genome-Wide Mapping of Loci Associated With Resistance to Clubroot in Brassica napus ssp. napobrassica (Rutabaga) Accessions From Nordic Countries. FRONTIERS IN PLANT SCIENCE 2020; 11:742. [PMID: 32595668 PMCID: PMC7303339 DOI: 10.3389/fpls.2020.00742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 05/08/2020] [Indexed: 05/12/2023]
Abstract
Rutabaga [Brassica napus ssp. napobrassica (L.) Hanelt] is reported to be an excellent source of clubroot (Plasmodiophora brassicae) resistance genes. In this study, 124 rutabaga accessions from the Nordic countries (Norway, Sweden, Finland, Denmark, and Iceland) were evaluated for their reaction to five single-spore isolates representing P. brassicae pathotypes 2F, 3H, 5I, 6M, and 8N and 12 field isolates representing pathotypes 2B, 3A, 3O, 5C, 5G, 5K, 5L, 5X (two isolates, L-G2 and L-G3), 8E, 8J, and 8P. The accessions were also genotyped using a 15K Brassica SNP array and 60 PCR-based primers linked to previously identified clubroot resistance genes. Six thousand eight hundred sixty-one SNP markers were retained after filtering with TASSEL 5.0, and used to evaluate four general linear models (GLM) and four mixed linear models (MLM). The PCA + K and Q + K MLM models gave the minimal deviance of the observed from the expected distribution in quantile-quantile plots, and hence were used for SNP-clubroot association analyses. In addition, 108 alleles derived from the PCR-based markers and the phenotypic data were analyzed with the PCA + K model. Forty-five SNPs and four PCR-based markers were identified to be associated strongly with resistance to isolates representing 13 pathotypes (2F, 3H, 5I, 6M, 8N, 2B, 3A, 3O, 5C, 5G, 5K, 5L, and 8P). These markers revealed the top and bottom segments of rutabaga chromosome A03 and the middle segment of chromosome A08 as genomic hotspots associated with resistance to the different P. brassicae pathotypes.
Collapse
|
17
|
Kubo N, Onnazaka K, Mizuno S, Tsuji G. Classification of "nabana" ( Brassica rapa) cultivars and landraces based on simple sequence repeat markers. BREEDING SCIENCE 2019; 69:179-185. [PMID: 31086496 PMCID: PMC6507715 DOI: 10.1270/jsbbs.18126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
Brassica rapa or B. napus vegetables for eating as young inflorescences and stalks are called "nabana". Japanese nabana includes "flower-bud type" and "stem-and-leaf type". Chinese and European types are also known (cai-xin, zicaitai, and broccoletto). We classified nabana belonging to B. rapa and other B. rapa vegetables. In a simple sequence repeat-based phylogram, 49 ingroup samples were classified into four groups (I-IV). Flower-bud and stem-and-leaf types were separated into groups I and III, respectively, with a slight overlap in group II. Cai-xin and non-heading Chinese cabbages were included in group IV. Broccoletto was placed in group III, close to turnips. Zicaitai cultivars were included in group II. We tested for clubroot resistance (CR) and its marker genotypes in nabana because of their agronomical importance. Ten cultivars were resistant to group 4 pathogen but not to group 2. Most of the CR cultivars had heterozygous resistance alleles in the CRb and Crr1 loci, consistent with inoculation tests. Our results suggest that Japanese nabana lines and foreign types were differentiated according to their consumption parts and cultivar origins, respectively. This study elucidates the relationships and CR properties of nabana and provides valuable information for the breeding of nabana cultivars.
Collapse
Affiliation(s)
- Nakao Kubo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University,
1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522,
Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center,
74 Oji, Kitainayazuma, Seika-cho, Soraku-gun, Kyoto 619-0244,
Japan
| | - Kumiko Onnazaka
- Kyoto Prefectural Kyoto Otokuni Agriculture Improvement Extension Center,
15 Tokudaiji Dangoden-cho, Nishikyogoku, Ukyo-ku, Kyoto 615-0846,
Japan
- Present address: Kyoto Prefectural Nantan Agriculture Improvement Extension Center21 Fujinoki, Oyama Higashi-machi, Sonobecho, Nantan, Kyoto 622-0041,
Japan
| | - Shinji Mizuno
- Warm Region Horticulture Institute, Chiba Prefectural Agriculture and Forestry Research Center,
1762 Yamamoto, Tateyama, Chiba 294-0014,
Japan
- Present address: College of Bioresource Sciences, Nihon University1866 Kameino, Fujisawa, Kanagawa 252-0880,
Japan
| | - Gento Tsuji
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University,
1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522,
Japan
| |
Collapse
|
18
|
Hirani AH, Gao F, Liu J, Fu G, Wu C, McVetty PBE, Duncan RW, Li G. Combinations of Independent Dominant Loci Conferring Clubroot Resistance in All Four Turnip Accessions ( Brassica rapa) From the European Clubroot Differential Set. FRONTIERS IN PLANT SCIENCE 2018; 9:1628. [PMID: 30483286 DOI: 10.3389/fpls.2015.01628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/19/2018] [Indexed: 05/26/2023]
Abstract
Clubroot disease is devastating to Brassica crop production when susceptible cultivars are planted in infected fields. European turnips are the most resistant sources and their resistance genes have been introduced into other crops such oilseed rape (Brassica napus L.), Chinese cabbage and other Brassica vegetables. The European clubroot differential (ECD) set contains four turnip accessions (ECD1-4). These ECD turnips exhibited high levels of resistance to clubroot when they were tested under controlled environmental conditions with Canadian field isolates. Gene mapping of the clubroot resistance genes in ECD1-4 were performed and three independent dominant resistance loci were identified. Two resistance loci were mapped on chromosome A03 and the third on chromosome A08. Each ECD turnip accession contained two of these three resistance loci. Some resistance loci were homozygous in ECD accessions while others showed heterozygosity based on the segregation of clubroot resistance in 20 BC1 families derived from ECD1 to 4. Molecular markers were developed linked to each clubroot resistance loci for the resistance gene introgression in different germplasm.
Collapse
Affiliation(s)
- Arvind H Hirani
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Feng Gao
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jun Liu
- Monsanto Canada Inc., Winnipeg MB, Canada
| | - Guohua Fu
- Monsanto Canada Inc., Winnipeg MB, Canada
| | - Chunren Wu
- Monsanto Canada Inc., Winnipeg MB, Canada
| | - Peter B E McVetty
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Robert W Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Genyi Li
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
19
|
Nguyen ML, Monakhos GF, Komakhin RA, Monakhos SG. The New Clubroot Resistance Locus Is Located on Chromosome A05 in Chinese Cabbage (Brassica rapa L.). RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418030080] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Hirani AH, Gao F, Liu J, Fu G, Wu C, McVetty PBE, Duncan RW, Li G. Combinations of Independent Dominant Loci Conferring Clubroot Resistance in All Four Turnip Accessions ( Brassica rapa) From the European Clubroot Differential Set. FRONTIERS IN PLANT SCIENCE 2018; 9:1628. [PMID: 30483286 PMCID: PMC6243934 DOI: 10.3389/fpls.2018.01628] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/19/2018] [Indexed: 05/12/2023]
Abstract
Clubroot disease is devastating to Brassica crop production when susceptible cultivars are planted in infected fields. European turnips are the most resistant sources and their resistance genes have been introduced into other crops such oilseed rape (Brassica napus L.), Chinese cabbage and other Brassica vegetables. The European clubroot differential (ECD) set contains four turnip accessions (ECD1-4). These ECD turnips exhibited high levels of resistance to clubroot when they were tested under controlled environmental conditions with Canadian field isolates. Gene mapping of the clubroot resistance genes in ECD1-4 were performed and three independent dominant resistance loci were identified. Two resistance loci were mapped on chromosome A03 and the third on chromosome A08. Each ECD turnip accession contained two of these three resistance loci. Some resistance loci were homozygous in ECD accessions while others showed heterozygosity based on the segregation of clubroot resistance in 20 BC1 families derived from ECD1 to 4. Molecular markers were developed linked to each clubroot resistance loci for the resistance gene introgression in different germplasm.
Collapse
Affiliation(s)
- Arvind H. Hirani
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Feng Gao
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jun Liu
- Monsanto Canada Inc., Winnipeg MB, Canada
| | - Guohua Fu
- Monsanto Canada Inc., Winnipeg MB, Canada
| | - Chunren Wu
- Monsanto Canada Inc., Winnipeg MB, Canada
| | | | - Robert W. Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Genyi Li
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Genyi Li, ;
| |
Collapse
|
21
|
Neik TX, Barbetti MJ, Batley J. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:1788. [PMID: 29163558 PMCID: PMC5681527 DOI: 10.3389/fpls.2017.01788] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus.
Collapse
Affiliation(s)
- Ting Xiang Neik
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Martin J. Barbetti
- School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
22
|
Zhan Z, Nwafor CC, Hou Z, Gong J, Zhu B, Jiang Y, Zhou Y, Wu J, Piao Z, Tong Y, Liu C, Zhang C. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L. PLoS One 2017; 12:e0177470. [PMID: 28505203 PMCID: PMC5432170 DOI: 10.1371/journal.pone.0177470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/27/2017] [Indexed: 11/29/2022] Open
Abstract
Interspecific hybridization is a powerful tool for improvement of crop species, it has the potential to broaden the genetic base and create new plant forms for breeding programs. Synthetic allopolyploid is a widely-used model for the study of genetic recombination and fixed heterosis in Brassica. In Brassica napus breeding, identification and introgression of new sources of clubroot resistance trait from wild or related species into it by hybridization is a long-term crop management strategy for clubroot disease. Radish (Raphanus sativus L.) is a close relative of the Brassica and most radish accessions are immune to the clubroot disease. A synthesized allotetraploid Brassicoraphanus (RRCC, 2n = 36) between R. sativus cv. HQ-04 (2n = 18, RR) and Brassica oleracea var. alboglabra (L.H Bailey) (2n = 18, CC) proved resistant of multiple clubroot disease pathogen P. brassicae. To predict the possibility to transfer the clubroot resistance trait from the RR subgenome of allotetraploid Brassicoraphanus (RRCC, 2n = 36) into Brassica napus (AACC, 2n = 38), we analyzed the frequency of chromosome pairings in the F1 hybrids produced from a cross between B. napus cv. HS5 and the allotetraploid, characterize the genomic composition of some backcrossed progeny (BC1) using GISH, BAC-FISH and AFLP techniques. The level of intergenomic pairing between A and R genomes in the F1 hybrid was high, allosyndetic bivalents formed in 73.53% PMCs indicative of significant level of homeologous recombination between two genomes and high probability of incorporating chromosomal segments/genes from R-genome into A/C-genomes. The BC1 plants inherited variant extra R chromosomes or fragments from allotetraploid as revealed by GISH and AFLP analysis. 13.51% BC2 individuals were resistant to clubroot disease, and several resistance lines had high pollen fertility, Overall, the genetic material presented in this work represents a potential new genetic resource for practical use in breeding B. napus clubroot resistant cultivars.
Collapse
Affiliation(s)
- Zongxiang Zhan
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chinedu Charles Nwafor
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoke Hou
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianfang Gong
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Zhu
- College of Life Science, Guizhou Normal University, Guiyang, China
| | - Yingfen Jiang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yongming Zhou
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiangsheng Wu
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongyun Piao
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yue Tong
- Yichang Academy of Agriculture Science, Yichang, China
| | - Chao Liu
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
23
|
Laperche A, Aigu Y, Jubault M, Ollier M, Guichard S, Glory P, Strelkov SE, Gravot A, Manzanares-Dauleux MJ. Clubroot resistance QTL are modulated by nitrogen input in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:669-684. [PMID: 28050618 DOI: 10.1007/s00122-016-2842-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/10/2016] [Indexed: 05/25/2023]
Abstract
Nitrogen levels can modulate the effectiveness of clubroot resistance in an isolate- and host-specific manner. While the same QTL were detected under high and low nitrogen, their effects were altered. Clubroot, caused by Plasmodiophora brassicae, is one of the most damaging diseases of oilseed rape and is known to be affected by nitrogen fertilization. However, the genetic factors involved in clubroot resistance have not been characterized under nitrogen-limiting conditions. This study aimed to assess the variability of clubroot resistance under different nitrogen levels and to characterize the impact of nitrogen supply on genetic resistance factors. Linkage analyses and a genome-wide association study were conducted to detect QTL for clubroot resistance and evaluate their sensitivity to nitrogen. The clubroot response of a set of 92 diverse oilseed rape accessions and 108 lines derived from a cross between 'Darmor-bzh' (resistant) and 'Yudal' (susceptible) was studied in the greenhouse under high- and low-nitrogen conditions, following inoculation with the P. brassicae isolates eH and K92-16. Resistance to each isolate was controlled by a major QTL and a few small-effects QTL. While the same QTL were detected under both high and low nitrogen, their effects were altered. Clubroot resistance to isolate eH, but not K92-16, was greater under a low-N supply versus a high-N supply. New sources of resistance were found among the oilseed rape accessions under both low and high-N conditions. The results are discussed relative to the literature and from a crop improvement perspective.
Collapse
Affiliation(s)
- A Laperche
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | - Y Aigu
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | - M Jubault
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | - M Ollier
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | - S Guichard
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | - P Glory
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | - S E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - A Gravot
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | | |
Collapse
|
24
|
The tandem repeated organization of NB-LRR genes in the clubroot-resistant CRb locus in Brassica rapa L. Mol Genet Genomics 2016; 292:397-405. [DOI: 10.1007/s00438-016-1281-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
|
25
|
Li L, Luo Y, Chen B, Xu K, Zhang F, Li H, Huang Q, Xiao X, Zhang T, Hu J, Li F, Wu X. A Genome-Wide Association Study Reveals New Loci for Resistance to Clubroot Disease in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1483. [PMID: 27746804 PMCID: PMC5044777 DOI: 10.3389/fpls.2016.01483] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 05/19/2023]
Abstract
Rapeseed (Brassica napus L.) is one of the most important oil crops in the world. However, the yield and quality of rapeseed were largely decreased by clubroot (Plasmodiophora brassicae Woronin). Therefore, it is of great importance for screening more resistant germplasms or genes and improving the resistance to P. brassicae in rapeseed breeding. In this study, a massive resistant identification for a natural global population was conducted in two environments with race/pathotype 4 of P. brassicae which was the most predominant in China, and a wide range of phenotypic variation was found in the population. In addition, a genome-wide association study of 472 accessions for clubroot resistance (CR) was performed with 60K Brassica Infinium SNP arrays for the first time. In total, nine QTLs were detected, seven of which were novel through integrative analysis. Furthermore, additive effects in genetic control of CR in rapeseed among the above loci were found. By bioinformatic analyses, the candidate genes of these loci were predicted, which indicated that TIR-NBS gene family might play an important role in CR. It is believable that the results presented in our study could provide valuable information for understanding the genetic mechanism and molecular regulation of CR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute – Chinese Academy of Agricultural SciencesWuhan, China
| |
Collapse
|
26
|
Li L, Luo Y, Chen B, Xu K, Zhang F, Li H, Huang Q, Xiao X, Zhang T, Hu J, Li F, Wu X. A Genome-Wide Association Study Reveals New Loci for Resistance to Clubroot Disease in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1483. [PMID: 27746804 DOI: 10.3389/fpls.2015.01483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 05/26/2023]
Abstract
Rapeseed (Brassica napus L.) is one of the most important oil crops in the world. However, the yield and quality of rapeseed were largely decreased by clubroot (Plasmodiophora brassicae Woronin). Therefore, it is of great importance for screening more resistant germplasms or genes and improving the resistance to P. brassicae in rapeseed breeding. In this study, a massive resistant identification for a natural global population was conducted in two environments with race/pathotype 4 of P. brassicae which was the most predominant in China, and a wide range of phenotypic variation was found in the population. In addition, a genome-wide association study of 472 accessions for clubroot resistance (CR) was performed with 60K Brassica Infinium SNP arrays for the first time. In total, nine QTLs were detected, seven of which were novel through integrative analysis. Furthermore, additive effects in genetic control of CR in rapeseed among the above loci were found. By bioinformatic analyses, the candidate genes of these loci were predicted, which indicated that TIR-NBS gene family might play an important role in CR. It is believable that the results presented in our study could provide valuable information for understanding the genetic mechanism and molecular regulation of CR.
Collapse
Affiliation(s)
- Lixia Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Yujie Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Biyun Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Fugui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Hao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Qian Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Xin Xiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Tianyao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Jihong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Feng Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| |
Collapse
|
27
|
Hasan MJ, Rahman H. Genetics and molecular mapping of resistance to Plasmodiophora brassicae pathotypes 2, 3, 5, 6, and 8 in rutabaga (Brassica napus var. napobrassica). Genome 2016; 59:805-815. [PMID: 27549861 DOI: 10.1139/gen-2016-0034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clubroot disease, caused by Plasmodiophora brassicae, is a threat to the production of Brassica crops including oilseed B. napus. In Canada, several pathotypes of this pathogen, such as pathotypes 2, 3, 5, 6, and 8, were identified, and resistance to these pathotypes was found in a rutabaga (B. napus var. napobrassica) genotype. In this paper, we report the genetic basis and molecular mapping of this resistance by use of F2, backcross (BC1), and doubled haploid (DH) populations generated from crossing of this rutabaga line to a susceptible spring B. napus canola line. The F1, F2, and BC1 populations were evaluated for resistance to pathotype 3, and the DH population was evaluated for resistance to pathotypes 2, 3, 5, 6, and 8. A 3:1 segregation in F2 and a 1:1 segregation in BC1 were found for resistance to pathotype 3, and a 1:1 segregation was found in the DH population for resistance to all pathotypes. Molecular mapping by using the DH population identified a genomic region on chromosome A8 carrying resistance to all five pathotypes. This suggests that a single gene or a cluster of genes, located in this genomic region, is involved in the control of resistance to these pathotypes.
Collapse
Affiliation(s)
- Muhammad Jakir Hasan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
28
|
Shimizu M, Pu ZJ, Kawanabe T, Kitashiba H, Matsumoto S, Ebe Y, Sano M, Funaki T, Fukai E, Fujimoto R, Okazaki K. Map-based cloning of a candidate gene conferring Fusarium yellows resistance in Brassica oleracea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:119-30. [PMID: 25351523 DOI: 10.1007/s00122-014-2416-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/11/2014] [Indexed: 05/13/2023]
Abstract
We identified the candidate gene conferring yellow wilt resistance (YR) in B. oleracea . This work will facilitate YR breeding programs for B. oleracea and its closely related species. Yellow wilt disease is one of the most serious diseases of cabbage worldwide. Type A resistance to the disease is controlled by a single dominant gene that is used in cabbage breeding. Our previous QTL study identified the FocBo1 locus controlling type A resistance. In this study, the FocBo1 locus was fine-mapped by using 139 recombinant F2 plants derived from resistant cabbage (AnjuP01) and susceptible broccoli (GCP04) DH lines. As a result, we successfully delimited the location of FocBo1 within 1.00 cM between markers, BoInd 2 and BoInd 11. Analysis of BAC and cosmid sequences corresponding to the FocBo1 locus identified an orthologous gene of Bra012688 that was recently identified as an candidate gene that confers yellows resistance in Chinese cabbage. The candidate gene-specific DNA markers and phenotypes in F1 cabbage cultivars and their selfed F2 populations showed a perfect correlation. Our identification of the candidate gene for FocBo1 will assist introduction of fusarium resistance into B. oleracea cultivars and contribute further understanding of interaction between Brassica plants and fusarium.
Collapse
Affiliation(s)
- Motoki Shimizu
- Laboratory of Plant Breeding, Graduate School of Science and Technology, Faculty of Agriculture, Niigata University, 2-8050, Ikarashi, Nishi-ku, Niigata, 950-2181, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kato T, Hatakeyama K, Fukino N, Matsumoto S. Fine mapping of the clubroot resistance gene CRb and development of a useful selectable marker in Brassica rapa. BREEDING SCIENCE 2013; 63:116-24. [PMID: 23641188 PMCID: PMC3621437 DOI: 10.1270/jsbbs.63.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/20/2012] [Indexed: 05/23/2023]
Abstract
In Chinese cabbage (Brassica rapa), the clubroot resistance (CR) gene CRb is effective against Plasmodiophora brassicae isolate No. 14, which is classified as pathotype group 3. Although markers linked to CRb have been reported, an accurate position in the genome and the gene structure are unknown. To determine the genomic location and estimate the structure of CRb, we developed 28 markers (average distance, 20.4 kb) around CRb and constructed a high-density partial map. The precise position of CRb was determined by using a population of 2,032 F2 plants generated by selfing B. rapa 'CR Shinki.' We determined that CRb is located in the 140-kb genomic region between markers KB59N07 and B1005 and found candidate resistance genes. Among other CR genes on chromosome R3, a genotype of CRa closest marker clearly matched those of CRb and Crr3 did not confer resistance to isolate No. 14. Based on the genotypes of 11 markers developed near CRb and resistance to isolate No. 14, 82 of 108 cultivars showed a strong correlation between genotypes and phenotypes. The results of this study will be useful for isolating CRb and breeding cultivars with resistance to pathotype group 3 by introducing CRb into susceptible cultivars through marker-assisted selection.
Collapse
Affiliation(s)
- Takeyuki Kato
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Katsunori Hatakeyama
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Nobuko Fukino
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Satoru Matsumoto
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| |
Collapse
|
30
|
Hatakeyama K, Suwabe K, Tomita RN, Kato T, Nunome T, Fukuoka H, Matsumoto S. Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS One 2013; 8:e54745. [PMID: 23382954 PMCID: PMC3559844 DOI: 10.1371/journal.pone.0054745] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
Clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae Woronin, is one of the most economically important diseases of Brassica crops in the world. Although many clubroot resistance (CR) loci have been identified through genetic analysis and QTL mapping, the molecular mechanisms of defense responses against P. brassicae remain unknown. Fine mapping of the Crr1 locus, which was originally identified as a single locus, revealed that it comprises two gene loci, Crr1a and Crr1b. Here we report the map-based cloning and characterization of Crr1a, which confers resistance to clubroot in Brassica rapa. Crr1a(G004), cloned from the resistant line G004, encodes a Toll-Interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) protein expressed in the stele and cortex of hypocotyl and roots, where secondary infection of the pathogen occurs, but not in root hairs, where primary infection occurs. Gain-of-function analysis proved that Crr1a(G004) alone conferred resistance to isolate Ano-01 in susceptible Arabidopsis and B. rapa. In comparison, the susceptible allele Crr1a(A9709) encodes a truncated NB-LRR protein, which lacked more than half of the TIR domain on account of the insertion of a solo-long terminal repeat (LTR) in exon 1 and included several substitutions and insertion-deletions in the LRR domain. This study provides a basis for further molecular analysis of defense mechanisms against P. brassicae and will contribute to the breeding of resistant cultivars of Brassica vegetables by marker-assisted selection.Data deposition The sequence reported in this paper has been deposited in the GenBank database (accession no. AB605024).
Collapse
Affiliation(s)
- Katsunori Hatakeyama
- Vegetable Breeding and Genome Research Division, NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Rubens Norio Tomita
- Vegetable Breeding and Genome Research Division, NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
| | - Takeyuki Kato
- Vegetable Breeding and Genome Research Division, NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Tsukasa Nunome
- Vegetable Breeding and Genome Research Division, NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
| | - Hiroyuki Fukuoka
- Vegetable Breeding and Genome Research Division, NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
| | - Satoru Matsumoto
- Vegetable Breeding and Genome Research Division, NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
| |
Collapse
|