1
|
Nair AU, Kundariya HS, Samantaray D, Dopp IJ, Allu AD, Mackenzie SA. Short-Term High Light Stress Analysis Through Differential Methylation Identifies Root Architecture and Cell Size Responses. PLANT, CELL & ENVIRONMENT 2025; 48:3269-3280. [PMID: 39722567 PMCID: PMC11963490 DOI: 10.1111/pce.15325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/04/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
DNA methylation repatterning is an epigenomic component of plant stress response, but the extent that methylome data can elucidate changes in plant growth following stress onset is not known. We applied high-resolution DNA methylation analysis to decode plant responses to short- and long-term high light stress and, integrating with gene expression data, attempted to predict components of plant growth response. We identified 105 differentially methylated genes (DMGs) following 1 h of high light treatment and 193 DMGs following 1 week of intermittent high light treatment. Two distinct methylome-predicted plant growth responses to high light treatment could be confirmed by linking methylome changes in auxin response pathways to observed changes in root architecture and methylome changes in cell cycle pathway components to endoreduplication and palisade cell enlargement. We observed methylome changes in a cyclic GMP-dependent protein kinase in association with high light stress signalling. The ability to associate intragenic methylation repatterning with predictable plant phenotypic outcomes after a limited period of high light treatment allows for data-based early prediction of plant growth responses. The approach also permits the dissection of gene networks underpinning plant growth adjustments during environmental change to uncover dynamic phenotype determinants.
Collapse
Affiliation(s)
- Akshay U. Nair
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
- Department of BiologyIndian Institute of Science Education and Research (IISER) TirupatiTirupatiAndhra PradeshIndia
| | - Hardik S. Kundariya
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Devidutta Samantaray
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
- Department of BiologyIndian Institute of Science Education and Research (IISER) TirupatiTirupatiAndhra PradeshIndia
| | - Isaac J. Dopp
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Annapurna Devi Allu
- Department of BiologyIndian Institute of Science Education and Research (IISER) TirupatiTirupatiAndhra PradeshIndia
| | - Sally A. Mackenzie
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
| |
Collapse
|
2
|
Kandpal P, Kaur K, Dhariwal R, Kaur S, Brar GK, Randhawa H, Singh J. Utilizing Short Interspersed Nuclear Element as a Genetic Marker for Pre-Harvest Sprouting in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:2981. [PMID: 39519902 PMCID: PMC11548262 DOI: 10.3390/plants13212981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Pre-harvest sprouting (PHS) is a complex abiotic stress caused by multiple exogenous and endogenous variables that results in random but significant quality and yield loss at the terminal crop stage in more than half of the wheat-producing areas of the world. Systematic research over more than five decades suggests that addressing this challenge requires tools beyond the traditional genetic manipulation approach. Previous molecular studies indicate a possible role of epigenetics in the regulation of seed dormancy and PHS in crops, especially through RNA-directed DNA methylation (RdDM) pathways mediated by Argonaute (AGO) proteins. In this study, we explore the role of the AGO802B gene associated with PHS resistance in wheat, through the presence of a SINE retrotransposon insertion. The current study found the SINE insertion at 3'UTR of the TaAGO802B present in 73.2% of 41 cultivars analyzed and in 92.6% of the resistant cultivar subset. The average expression of TaAGO802B in cultivars with the SINE insertion was 73.3% lower than in cultivars without insertion. This study also indicated a significant positive correlation between the PHS score and methylation levels in the cultivars. The resistant cultivars with the SINE insertion recorded 54.7% lower methylation levels than susceptible cultivars. Further analysis of a DH population (Sadash × P2711) reveals that SINE insertion co-segregates with PHS resistance. This sets forth the SINE insertion in TaAGO802B as a genetic marker for screening wheat germplasm and as an efficient tool for breeding PHS-resistant wheat cultivars.
Collapse
Affiliation(s)
- Purnima Kandpal
- Department of Plant Science, McGill University, 21111 Rue Lakeshore, Montreal, QC H9X 3V9, Canada; (P.K.); (K.K.)
| | - Karminderbir Kaur
- Department of Plant Science, McGill University, 21111 Rue Lakeshore, Montreal, QC H9X 3V9, Canada; (P.K.); (K.K.)
| | - Raman Dhariwal
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (R.D.); (S.K.); (G.K.B.); (H.R.)
| | - Simranjeet Kaur
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (R.D.); (S.K.); (G.K.B.); (H.R.)
| | - Gagandeep Kaur Brar
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (R.D.); (S.K.); (G.K.B.); (H.R.)
| | - Harpinder Randhawa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (R.D.); (S.K.); (G.K.B.); (H.R.)
| | - Jaswinder Singh
- Department of Plant Science, McGill University, 21111 Rue Lakeshore, Montreal, QC H9X 3V9, Canada; (P.K.); (K.K.)
| |
Collapse
|
3
|
Gong Z, Zheng J, Yang N, Li X, Qian S, Sun F, Geng S, Liang Y, Wang J. Whole-Genome Bisulfite Sequencing (WGBS) Analysis of Gossypium hirsutum under High-Temperature Stress Conditions. Genes (Basel) 2024; 15:1241. [PMID: 39457365 PMCID: PMC11507439 DOI: 10.3390/genes15101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND DNA methylation is an important part of epigenetic regulation and plays an important role in the response of plants to adverse stress. METHODS In this study, whole-genome bisulfite sequencing (WGBS) was performed on the high-temperature-resistant material Xinluzao 36 and the high-temperature-sensitive material Che 61-72 at 0 h and 12 h under high-temperature stress conditions. RESULTS The results revealed that the Gossypium hirsutum methylation levels of CG and CHG (H = A, C, or T) decreased after the high-temperature stress treatment, and the methylation level of the A subgenome was significantly greater than that of the D subgenome. The methylation level of CHH increased, and the methylation level of CHH in the D subgenome was significantly greater than that in the A subgenome after high-temperature stress treatment. The methylation density of CG is lower than that of CHG and CHH, and the methylation density of the middle region of chromosomes is greater than that of both ends, which is opposite to the distribution density of genes. There were 124 common differentially methylated genes in the CG, CHG, and CHH groups, and 5130 common DEGs and differentially methylated genes were found via joint analysis with RNA-seq; these genes were significantly enriched in the biosynthesis of plant hormones, thiamine metabolism, glutathione metabolism, and tyrosine metabolism pathways. DNA methylation did not affect the expression of many genes (accounting for 85.68% of the differentially methylated genes), DNA methylation-promoted gene expression was located mainly in the downstream region of the gene or gene body, and the expression of inhibitory genes was located mainly in the upstream region of the gene. CONCLUSIONS This study provides a theoretical basis for further exploration of the gene expression and functional regulatory mechanism of G. hirsutum DNA methylation under high-temperature stress conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yajun Liang
- Cash Crops Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.G.); (J.Z.); (N.Y.); (X.L.); (S.Q.); (F.S.); (S.G.); (J.W.)
| | | |
Collapse
|
4
|
Talarico E, Zambelli A, Araniti F, Greco E, Chiappetta A, Bruno L. Unravelling the Epigenetic Code: DNA Methylation in Plants and Its Role in Stress Response. EPIGENOMES 2024; 8:30. [PMID: 39189256 PMCID: PMC11348131 DOI: 10.3390/epigenomes8030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Environmental stress significantly affects plant growth, development, and survival. Plants respond to stressors such as temperature fluctuations, water scarcity, nutrient deficiencies, and pathogen attacks through intricate molecular and physiological adaptations. Epigenetic mechanisms are crucial in regulating gene expression in response to environmental stress. This review explores the current understanding of epigenetic modifications, including DNA methylation, and their roles in modulating gene expression patterns under environmental stress conditions. The dynamic nature of epigenetic modifications, their crosstalk with stress-responsive pathways, and their potential implications for plant adaptation and crop improvement are highlighted in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Emanuela Talarico
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Alice Zambelli
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy; (A.Z.); (F.A.)
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy; (A.Z.); (F.A.)
| | - Eleonora Greco
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Adriana Chiappetta
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| |
Collapse
|
5
|
Torres JR, Sanchez DH. Emerging roles of plant transcriptional gene silencing under heat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38864847 DOI: 10.1111/tpj.16875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
Plants continuously endure unpredictable environmental fluctuations that upset their physiology, with stressful conditions negatively impacting yield and survival. As a contemporary threat of rapid progression, global warming has become one of the most menacing ecological challenges. Thus, understanding how plants integrate and respond to elevated temperatures is crucial for ensuring future crop productivity and furthering our knowledge of historical environmental acclimation and adaptation. While the canonical heat-shock response and thermomorphogenesis have been extensively studied, evidence increasingly highlights the critical role of regulatory epigenetic mechanisms. Among these, the involvement under heat of heterochromatic suppression mediated by transcriptional gene silencing (TGS) remains the least understood. TGS refers to a multilayered metabolic machinery largely responsible for the epigenetic silencing of invasive parasitic nucleic acids and the maintenance of parental imprints. Its molecular effectors include DNA methylation, histone variants and their post-translational modifications, and chromatin packing and remodeling. This work focuses on both established and emerging insights into the contribution of TGS to the physiology of plants under stressful high temperatures. We summarized potential roles of constitutive and facultative heterochromatin as well as the most impactful regulatory genes, highlighting events where the loss of epigenetic suppression has not yet been associated with corresponding changes in epigenetic marks.
Collapse
Affiliation(s)
- José Roberto Torres
- Facultad de Agronomía, IFEVA (CONICET-UBA), Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Diego H Sanchez
- Facultad de Agronomía, IFEVA (CONICET-UBA), Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| |
Collapse
|
6
|
Ijaz A, Anwar Z, Ali A, Ditta A, Shani MY, Haidar S, Wang B, Fang L, Khan SMUD, Khan MKR. Unraveling the genetic and molecular basis of heat stress in cotton. Front Genet 2024; 15:1296622. [PMID: 38919956 PMCID: PMC11196824 DOI: 10.3389/fgene.2024.1296622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human activities and climate change have resulted in frequent and intense weather fluctuations, leading to diverse abiotic stresses on crops which hampers greatly their metabolic activities. Heat stress, a prevalent abiotic factor, significantly influences cotton plant biological activities resulting in reducing yield and production. We must deepen our understanding of how plants respond to heat stress across various dimensions, encompassing genes, RNAs, proteins, metabolites for effective cotton breeding. Multi-omics methods, primarily genomics, transcriptomics, proteomics, metabolomics, and phenomics, proves instrumental in studying cotton's responses to abiotic stresses. Integrating genomics, transcriptomics, proteomics, and metabolomic is imperative for our better understanding regarding genetics and molecular basis of heat tolerance in cotton. The current review explores fundamental omics techniques, covering genomics, transcriptomics, proteomics, and metabolomics, to highlight the progress made in cotton omics research.
Collapse
Affiliation(s)
- Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Yousaf Shani
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Boahua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Liu Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | | | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| |
Collapse
|
7
|
López ME, Denoyes B, Bucher E. Epigenomic and transcriptomic persistence of heat stress memory in strawberry (Fragaria vesca). BMC PLANT BIOLOGY 2024; 24:405. [PMID: 38750420 PMCID: PMC11096098 DOI: 10.1186/s12870-024-05093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND In plants, epigenetic stress memory has so far been found to be largely transient. Here, we wanted to assess the heritability of heat stress-induced epigenetic and transcriptomic changes following woodland strawberry (Fragaria vesca) reproduction. Strawberry is an ideal model to study epigenetic inheritance because it presents two modes of reproduction: sexual (self-pollinated plants) and asexual (clonally propagated plants named daughter plants). Taking advantage of this model, we investigated whether heat stress-induced DNA methylation changes can be transmitted via asexual reproduction. RESULTS Our genome-wide study provides evidence for stress memory acquisition and maintenance in F. vesca. We found that specific DNA methylation marks or epimutations are stably transmitted over at least three asexual generations. Some of the epimutations were associated with transcriptional changes after heat stress. CONCLUSION Our findings show that the strawberry methylome and transcriptome respond with a high level of flexibility to heat stress. Notably, independent plants acquired the same epimutations and those were inherited by their asexual progenies. Overall, the asexual progenies can retain some information in the genome of past stresses encountered by their progenitors. This molecular memory, also documented at the transcriptional level, might be involved in functional plasticity and stress adaptation. Finally, these findings may contribute to novel breeding approaches for climate-ready plants.
Collapse
Affiliation(s)
- María-Estefanía López
- Crop Genome Dynamics Group, Agroscope, Nyon, 1260, Switzerland
- Department of Botany and Plant Biology, Faculty of Sciences, University of Geneva, Geneva, 1205, Switzerland
| | - Béatrice Denoyes
- INRAE, Biologie du Fruit et Pathologie, Univ. Bordeaux, Villenave d'Ornon, F-33140, France
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope, Nyon, 1260, Switzerland.
| |
Collapse
|
8
|
Yang X, Bai Z, He Y, Wang N, Sun L, Li Y, Yin Z, Wang X, Zhang B, Han M, Lu X, Chen X, Wang D, Wang J, Wang S, Guo L, Chen C, Feng K, Ye W. Genome-wide characterization of DNA methyltransferase family genes implies GhDMT6 improving tolerance of salt and drought on cotton. BMC PLANT BIOLOGY 2024; 24:312. [PMID: 38649800 PMCID: PMC11036760 DOI: 10.1186/s12870-024-04985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND DNA methylation is an important epigenetic mode of genomic DNA modification and plays a vital role in maintaining epigenetic content and regulating gene expression. Cytosine-5 DNA methyltransferase (C5-MTase) are the key enzymes in the process of DNA methylation. However, there is no systematic analysis of the C5-MTase in cotton so far, and the function of DNMT2 genes has not been studied. METHODS In this study, the whole genome of cotton C5-MTase coding genes was identified and analyzed using a bioinformatics method based on information from the cotton genome, and the function of GhDMT6 was further validated by VIGS experiments and subcellular localization analysis. RESULTS 33 C5-MTases were identified from three cotton genomes, and were divided into four subfamilies by systematic evolutionary analysis. After the protein domain alignment of C5-MTases in cotton, 6 highly conserved motifs were found in the C-terminus of 33 proteins involved in methylation modification, which indicated that C5-MTases had a basic catalytic methylation function. These proteins were divided into four classes based on the N-terminal difference, of which DNMT2 lacks the N-terminal regulatory domain. The expression of C5-MTases in different parts of cotton was different under different stress treatments, which indicated the functional diversity of cotton C5-MTase gene family. Among the C5-MTases, the GhDMT6 had a obvious up-regulated expression. After silencing GhDMT6 with VIGS, the phenotype of cotton seedlings under different stress treatments showed a significant difference. Compared with cotton seedlings that did not silence GhDMT6, cotton seedlings silencing GhDMT6 showed significant stress resistance. CONCLUSION The results show that C5-MTases plays an important role in cotton stress response, which is beneficial to further explore the function of DNMT2 subfamily genes.
Collapse
Affiliation(s)
- Xiaomin Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
- Cash Crop Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Zhigang Bai
- Cash Crop Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde, Hunan, 415101, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| | - Liangqing Sun
- Cash Crop Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Yongqi Li
- Cash Crop Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Zujun Yin
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiaoge Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Binglei Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China.
| |
Collapse
|
9
|
Swaegers J, De Cupere S, Gaens N, Lancaster LT, Carbonell JA, Sánchez Guillén RA, Stoks R. Plasticity and associated epigenetic mechanisms play a role in thermal evolution during range expansion. Evol Lett 2024; 8:76-88. [PMID: 38370551 PMCID: PMC10872138 DOI: 10.1093/evlett/qrac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 02/20/2024] Open
Abstract
Due to global change, many species are shifting their distribution and are thereby confronted with novel thermal conditions at the moving range edges. Especially during the initial phases of exposure to a new environment, it has been hypothesized that plasticity and associated epigenetic mechanisms enable species to cope with environmental change. We tested this idea by capitalizing on the well-documented southward range expansion of the damselfly Ischnura elegans from France into Spain where the species invaded warmer regions in the 1950s in eastern Spain (old edge region) and in the 2010s in central Spain (new edge region). Using a common garden experiment at rearing temperatures matching the ancestral and invaded thermal regimes, we tested for evolutionary changes in (thermal plasticity in) larval life history and heat tolerance in these expansion zones. Through the use of de- and hypermethylating agents, we tested whether epigenetic mechanisms play a role in enabling heat tolerance during expansion. We used the phenotype of the native sister species in Spain, I. graellsii, as proxy for the locally adapted phenotype. New edge populations converged toward the phenotype of the native species through plastic thermal responses in life history and heat tolerance while old edge populations (partly) constitutively evolved a faster life history and higher heat tolerance than the core populations, thereby matching the native species. Only the heat tolerance of new edge populations increased significantly when exposed to the hypermethylating agent. This suggests that the DNA methylation machinery is more amenable to perturbation at the new edge and shows it is able to play a role in achieving a higher heat tolerance. Our results show that both (evolved) plasticity as well as associated epigenetic mechanisms are initially important when facing new thermal regimes but that their importance diminishes with time.
Collapse
Affiliation(s)
- Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Simon De Cupere
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Noah Gaens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - José A Carbonell
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain
| | | | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Singh VK, Ahmed S, Saini DK, Gahlaut V, Chauhan S, Khandare K, Kumar A, Sharma PK, Kumar J. Manipulating epigenetic diversity in crop plants: Techniques, challenges and opportunities. Biochim Biophys Acta Gen Subj 2024; 1868:130544. [PMID: 38104668 DOI: 10.1016/j.bbagen.2023.130544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Epigenetic modifications act as conductors of inheritable alterations in gene expression, all while keeping the DNA sequence intact, thereby playing a pivotal role in shaping plant growth and development. This review article presents an overview of techniques employed to investigate and manipulate epigenetic diversity in crop plants, focusing on both naturally occurring and artificially induced epialleles. The significance of epigenetic modifications in facilitating adaptive responses is explored through the examination of how various biotic and abiotic stresses impact them. Further, environmental chemicals are explored for their role in inducing epigenetic changes, particularly focusing on inhibitors of DNA methylation like 5-AzaC and zebularine, as well as inhibitors of histone deacetylation including trichostatin A and sodium butyrate. The review delves into various approaches for generating epialleles, including tissue culture techniques, mutagenesis, and grafting, elucidating their potential to induce heritable epigenetic modifications in plants. In addition, the ground breaking CRISPR/Cas is emphasized for its accuracy in targeting specific epigenetic changes. This presents a potent tools for deciphering the intricacies of epigenetic mechanisms. Furthermore, the intricate relationship between epigenetic modifications and non-coding RNA expression, including siRNAs and miRNAs, is investigated. The emerging role of exo-RNAi in epigenetic regulation is also introduced, unveiling its promising potential for future applications. The article concludes by addressing the opportunities and challenges presented by these techniques, emphasizing their implications for crop improvement. Conclusively, this extensive review provides valuable insights into the intricate realm of epigenetic changes, illuminating their significance in phenotypic plasticity and their potential in advancing crop improvement.
Collapse
Affiliation(s)
| | - Shoeb Ahmed
- Ch. Charan Singh University, Meerut 250004, India
| | - Dinesh Kumar Saini
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Vijay Gahlaut
- University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | | | - Kiran Khandare
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Ashutosh Kumar
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Pradeep Kumar Sharma
- Ch. Charan Singh University, Meerut 250004, India; Maharaja Suhel Dev State University, Azamgarh 276404, U.P., India
| | - Jitendra Kumar
- National Agri-Food Biotechnology Institute, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
11
|
Seem K, Kaur S, Kumar S, Mohapatra T. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Crit Rev Biochem Mol Biol 2024; 59:69-98. [PMID: 38440883 DOI: 10.1080/10409238.2024.2320659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Traditionally, it has been believed that inheritance is driven as phenotypic variations resulting from changes in DNA sequence. However, this paradigm has been challenged and redefined in the contemporary era of epigenetics. The changes in DNA methylation, histone modification, non-coding RNA biogenesis, and chromatin remodeling play crucial roles in genomic functions and regulation of gene expression. More importantly, some of these changes are inherited to the next generations as a part of epigenetic memory and play significant roles in gene expression. The sum total of all changes in DNA bases, histone proteins, and ncRNA biogenesis constitutes the epigenome. Continuous progress in deciphering epigenetic regulations and the existence of heritable epigenetic/epiallelic variations associated with trait of interest enables to deploy epigenome editing tools to modulate gene expression. DNA methylation marks can be utilized in epigenome editing for the manipulation of gene expression. Initially, genome/epigenome editing technologies relied on zinc-finger protein or transcriptional activator-like effector protein. However, the discovery of clustered regulatory interspaced short palindromic repeats CRISPR)/deadCRISPR-associated protein 9 (dCas9) enabled epigenome editing to be more specific/efficient for targeted DNA (de)methylation. One of the major concerns has been the off-target effects, wherein epigenome editing may unintentionally modify gene/regulatory element which may cause unintended change/harmful effects. Moreover, epigenome editing of germline cell raises several ethical/safety issues. This review focuses on the recent developments in epigenome editing tools/techniques, technological limitations, and future perspectives of this emerging technology in therapeutics for human diseases as well as plant improvement to achieve sustainable developmental goals.
Collapse
Affiliation(s)
- Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Trilochan Mohapatra
- Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India
| |
Collapse
|
12
|
Rehman S, Ahmad Z, Ramakrishnan M, Kalendar R, Zhuge Q. Regulation of plant epigenetic memory in response to cold and heat stress: towards climate resilient agriculture. Funct Integr Genomics 2023; 23:298. [PMID: 37700098 DOI: 10.1007/s10142-023-01219-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
Plants have evolved to adapt and grow in hot and cold climatic conditions. Some also adapt to daily and seasonal temperature changes. Epigenetic modifications play an important role in regulating plant tolerance under such conditions. DNA methylation and post-translational modifications of histone proteins influence gene expression during plant developmental stages and under stress conditions, including cold and heat stress. While short-term modifications are common, some modifications may persist and result in stress memory that can be inherited by subsequent generations. Understanding the mechanisms of epigenomes responding to stress and the factors that trigger stress memory is crucial for developing climate-resilient agriculture, but such an integrated view is currently limited. This review focuses on the plant epigenetic stress memory during cold and heat stress. It also discusses the potential of machine learning to modify stress memory through epigenetics to develop climate-resilient crops.
Collapse
Affiliation(s)
- Shamsur Rehman
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, Viikinkaari 1, FI-00014 University of Helsinki, Helsinki, Finland.
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China.
| |
Collapse
|
13
|
Araujo NDS, Perez R, Willot Q, Defrance M, Aron S. Facing lethal temperatures: Heat-shock response in desert and temperate ants. Ecol Evol 2023; 13:e10438. [PMID: 37720060 PMCID: PMC10500329 DOI: 10.1002/ece3.10438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
Global climate changes may cause profound effects on species adaptation, particularly in ectotherms for whom even moderate warmer temperatures can lead to disproportionate heat failure. Still, several organisms evolved to endure high desert temperatures. Here, we describe the thermal tolerance survival and the transcriptomic heat stress response of three genera of desert (Cataglyphis, Melophorus, and Ocymyrmex) and two of temperate ants (Formica and Myrmica) and explore convergent and specific adaptations. We found heat stress led to either a reactive or a constitutive response in desert ants: Cataglyphis holgerseni and Melophorus bagoti differentially regulated very few transcripts in response to heat (0.12% and 0.14%, respectively), while Cataglyphis bombycina and Ocymyrmex robustior responded with greater expression alterations (respectively affecting 0.6% and 1.53% of their transcriptomes). These two responsive mechanisms-reactive and constitutive-were related to individual thermal tolerance survival and convergently evolved in distinct desert ant genera. Moreover, in comparison with desert species, the two temperate ants differentially expressed thousands of transcripts more in response to heat stress (affecting 8% and 12.71% of F. fusca and Myr. sabuleti transcriptomes). In summary, we show that heat adaptation in thermophilic ants involved changes in the expression response. Overall, desert ants show reduced transcriptional alterations even when under high thermal stress, and their expression response may be either constitutive or reactive to temperature increase.
Collapse
Affiliation(s)
| | - Rémy Perez
- Department of Evolutionary Biology & EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Quentin Willot
- Department of Evolutionary Biology & EcologyUniversité Libre de BruxellesBrusselsBelgium
- Zoophysiology, Department of BiologyAarhus UniversityAarhus‐CDenmark
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in BrusselsUniversité Libre de BruxellesBrusselsBelgium
| | - Serge Aron
- Department of Evolutionary Biology & EcologyUniversité Libre de BruxellesBrusselsBelgium
| |
Collapse
|
14
|
Kumar M, Rani K. Epigenomics in stress tolerance of plants under the climate change. Mol Biol Rep 2023:10.1007/s11033-023-08539-6. [PMID: 37294468 DOI: 10.1007/s11033-023-08539-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Climate change has had a tremendous impact on the environment in general as well as agricultural crops grown in these situations as time passed. Agricultural production of crops is less suited and of lower quality due to disturbances in plant metabolism brought on by sensitivity to environmental stresses, which are brought on by climate change. Abiotic stressors that are specific to climate change, including as drought, extremes in temperature, increasing CO2, waterlogging from heavy rain, metal toxicity, and pH changes, are known to negatively affect an array of species. Plants adapt to these challenges by undergoing genome-wide epigenetic changes, which are frequently accompanied by differences in transcriptional gene expression. The sum of a cell's biochemical modifications to its nuclear DNA, post-translational modifications to histones, and variations in the synthesis of non-coding RNAs is called an epigenome. These modifications frequently lead to variations in gene expression that occur without any alteration in the underlying base sequence. EPIGENETIC MECHANISMS AND MARKS The methylation of homologous loci by three different modifications-genomic (DNA methylation), chromatin (histone modifications), and RNA-directed DNA methylation (RdDM)-could be regarded as epigenetic mechanisms that control the regulation of differential gene expression. Stresses from the environment cause chromatin remodelling, which enables plant cells to adjust their expression patterns temporarily or permanently. EPIGENOMICS' CONSEQUENCES FOR GENOME STABILITY AND GENE EXPRESSION: DNA methylation affects gene expression in response to abiotic stressors by blocking or suppressing transcription. Environmental stimuli cause changes in DNA methylation levels, either upward in the case of hypermethylation or downward in the case of hypomethylation. The type of stress response that occurs as a result also affects the degree of DNA methylation alterations. Stress is also influenced by DRM2 and CMT3 methylating CNN, CNG, and CG. Both plant development and stress reactions depend on histone changes. Gene up-regulation is associated with histone tail phosphorylation, ubiquitination, and acetylation, while gene down-regulation is associated with de-acetylation and biotinylation. Plants undergo a variety of dynamic changes to histone tails in response to abiotic stressors. The relevance of these transcripts against stress is highlighted by the accumulation of numerous additional antisense transcripts, a source of siRNAs, caused by abiotic stresses. The study highlights the finding that plants can be protected from a range of abiotic stresses by epigenetic mechanisms such DNA methylation, histone modification, and RNA-directed DNA methylation. TRANSGENERATIONAL INHERITANCE AND SOURCES OF EPIGENETIC VARIATION: Stress results in the formation of epialleles, which are either transient or enduring epigenetic stress memory in plants. After the stress is gone, the stable memory is kept for the duration of the plant's remaining developmental cycles or passed on to the next generations, leading to plant evolution and adaptability. The bulk of epigenetic changes brought on by stress are temporary and return to normal after the stress has passed. Some of the modifications, however, might be long-lasting and transmitted across mitotic or even meiotic cell divisions. Epialleles often have genetic or non-genetic causes. Epialleles can arise spontaneously due to improper methylation state maintenance, short RNA off-target effects, or other non-genetic causes. Developmental or environmental variables that influence the stability of epigenetic states or direct chromatin modifications may also be non-genetic drivers of epigenetic variation. Transposon insertions that change local chromatin and structural rearrangements, such copy number changes that are genetically related or unrelated, are two genetic sources of epialleles. EPIGENOMICS IN CROP IMPROVEMENT To include epigenetics into crop breeding, it is necessary to create epigenetic variation as well as to identify and evaluate epialleles. Epigenome editing or epi-genomic selection may be required for epiallele creation and identification. In order to combat the challenges given by changing environments, these epigenetic mechanisms have generated novel epialleles that can be exploited to develop new crop types that are more climate-resilient. Numerous techniques can be used to alter the epigenome generally or at specific target loci in order to induce the epigenetic alterations necessary for crop development. Technologies like CRISPR/Cas9 and dCas, which have recently advanced, have opened up new avenues for the study of epigenetics. Epialleles could be employed in epigenomics-assisted breeding in addition to sequence-based markers for crop breeding. CONCLUSIONS AND FUTURE PROSPECTUS A few of the exciting questions that still need to be resolved in the area of heritable epigenetic variation include a better understanding of the epigenetic foundation of characteristics, the stability and heritability of epialleles, and the sources of epigenetic variation in crops. Investigating long intergenic non-coding RNAs (lincRNAs) as an epigenetic process might open up a new path to understanding crop plant's ability to withstand abiotic stress. For many of these technologies and approaches to be more applicable and deployable at a lower cost, technological breakthroughs will also be necessary. Breeders will probably need to pay closer attention to crop epialleles and how they can affect future responses to climate changes. The development of epialleles suitable for particular environmental circumstances may be made possible by creating targeted epigenetic changes in pertinent genes and by comprehending the molecular underpinnings of trans generational epigenetic inheritance. More research on a wider variety of plant species is required in order to fully comprehend the mechanisms that produce and stabilise epigenetic variation in crops. In addition to a collaborative and multidisciplinary effort by researchers in many fields of plant science, this will require a greater integration of the epigenomic data gathered in many crops. Before it may be applied generally, more study is required.
Collapse
Affiliation(s)
- Mithlesh Kumar
- AICRN On Potential Crops, ARS Mandor, Agriculture University, Jodhpur, 342 304, Rajasthan, India.
| | - Kirti Rani
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), Regional Station, Jodhpur, 342 003, Rajasthan, India
| |
Collapse
|
15
|
Louis N, Dhankher OP, Puthur JT. Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans-generational memory. PHYSIOLOGIA PLANTARUM 2023; 175:e13881. [PMID: 36840678 DOI: 10.1111/ppl.13881] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The significance of priming in enhancing abiotic stress tolerance is well-established in several important crops. Priming positively impacts plant growth and improves stress tolerance at multiple developmental stages, and seed priming is one of the most used methods. Seed priming influences the pre-germinative metabolism that ensures proper germination, early seedling establishment, enhanced stress tolerance and yield, even under unfavourable environmental conditions. Seed priming involves pre-exposure of seeds to mild stress, and this pre-treatment induces specific changes at the physiological and molecular levels. Interestingly, priming can improve the efficiency of the DNA repair mechanism, along with activation of specific signalling proteins and transcription factors for rapid and efficient stress tolerance. Notably, such acquired stress tolerance may be retained for longer duration, namely, later developmental stages or even subsequent generations. Epigenetic and chromatin-based mechanisms such as DNA methylation, histone modifications, and nucleosome positioning are some of the key molecular changes involved in priming/stress memory. Further, the retention of induced epigenetic changes may influence the priming-induced trans-generational stress memory. This review discusses known and plausible seed priming-induced molecular mechanisms that govern germination and stress memory within and across generations, highlighting their role in regulating the plant response to abiotic stresses. Understanding the molecular mechanism for activation of stress-responsive genes and the epigenetic changes resulting from seed priming will help to improve the resiliency of the crops for enhanced productivity under extreme environments.
Collapse
Affiliation(s)
- Noble Louis
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malapuram, Kerala, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malapuram, Kerala, India
| |
Collapse
|
16
|
Pazzaglia J, Dattolo E, Ruocco M, Santillán-Sarmiento A, Marin-Guirao L, Procaccini G. DNA methylation dynamics in a coastal foundation seagrass species under abiotic stressors. Proc Biol Sci 2023; 290:20222197. [PMID: 36651048 PMCID: PMC9845983 DOI: 10.1098/rspb.2022.2197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
DNA methylation (DNAm) has been intensively studied in terrestrial plants in response to environmental changes, but its dynamic changes in a temporal scale remain unexplored in marine plants. The seagrass Posidonia oceanica ranks among the slowest-growing and longest-living plants on Earth, and is particularly vulnerable to sea warming and local anthropogenic pressures. Here, we analysed the dynamics of DNAm changes in plants collected from coastal areas differentially impacted by eutrophication (i.e. oligotrophic, Ol; eutrophic, Eu) and exposed to abiotic stressors (nutrients, temperature increase and their combination). Levels of global DNAm (% 5-mC) and the expression of key genes involved in DNAm were assessed after one, two and five weeks of exposure. Results revealed a clear differentiation between plants, depending on environmental stimuli, time of exposure and plants' origin. % 5-mC levels were higher during the initial stress exposure especially in Ol plants, which upregulated almost all genes involved in DNAm. Contrarily, Eu plants showed lower expression levels, which increased under chronic exposure to stressors, particularly to temperature. These findings show that DNAm is dynamic in P. oceanica during stress exposure and underlined that environmental epigenetic variations could be implicated in the regulation of acclimation and phenotypic differences depending on local conditions.
Collapse
Affiliation(s)
- Jessica Pazzaglia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Alex Santillán-Sarmiento
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
- Faculty of Engineering, National University of Chimborazo, Riobamba, Ecuador
| | - Lazaro Marin-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
- Seagrass Ecology Group, Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Murcia, Spain
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| |
Collapse
|
17
|
Ramakrishnan M, Zhang Z, Mullasseri S, Kalendar R, Ahmad Z, Sharma A, Liu G, Zhou M, Wei Q. Epigenetic stress memory: A new approach to study cold and heat stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1075279. [PMID: 36570899 PMCID: PMC9772030 DOI: 10.3389/fpls.2022.1075279] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 05/28/2023]
Abstract
Understanding plant stress memory under extreme temperatures such as cold and heat could contribute to plant development. Plants employ different types of stress memories, such as somatic, intergenerational and transgenerational, regulated by epigenetic changes such as DNA and histone modifications and microRNAs (miRNA), playing a key role in gene regulation from early development to maturity. In most cases, cold and heat stresses result in short-term epigenetic modifications that can return to baseline modification levels after stress cessation. Nevertheless, some of the modifications may be stable and passed on as stress memory, potentially allowing them to be inherited across generations, whereas some of the modifications are reactivated during sexual reproduction or embryogenesis. Several stress-related genes are involved in stress memory inheritance by turning on and off transcription profiles and epigenetic changes. Vernalization is the best example of somatic stress memory. Changes in the chromatin structure of the Flowering Locus C (FLC) gene, a MADS-box transcription factor (TF), maintain cold stress memory during mitosis. FLC expression suppresses flowering at high levels during winter; and during vernalization, B3 TFs, cold memory cis-acting element and polycomb repressive complex 1 and 2 (PRC1 and 2) silence FLC activation. In contrast, the repression of SQUAMOSA promoter-binding protein-like (SPL) TF and the activation of Heat Shock TF (HSFA2) are required for heat stress memory. However, it is still unclear how stress memory is inherited by offspring, and the integrated view of the regulatory mechanisms of stress memory and mitotic and meiotic heritable changes in plants is still scarce. Thus, in this review, we focus on the epigenetic regulation of stress memory and discuss the application of new technologies in developing epigenetic modifications to improve stress memory.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhijun Zhang
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Guohua Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Murray KO, Clanton TL, Horowitz M. Epigenetic responses to heat: From adaptation to maladaptation. Exp Physiol 2022; 107:1144-1158. [PMID: 35413138 PMCID: PMC9529784 DOI: 10.1113/ep090143] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review outlines the history of research on epigenetic adaptations to heat exposure. The perspective taken is that adaptations reflect properties of hormesis, whereby low, repeated doses of heat induce adaptation (acclimation/acclimatization); whereas brief, life-threatening exposures can induce maladaptive responses. What advances does it highlight? The epigenetic mechanisms underlying acclimation/acclimatization comprise specific molecular programmes on histones that regulate heat shock proteins transcriptionally and protect the organism from subsequent heat exposures, even after long delays. The epigenetic signalling underlying maladaptive responses might rely, in part, on extensive changes in DNA methylation that are sustained over time and might contribute to later health challenges. ABSTRACT Epigenetics plays a strong role in molecular adaptations to heat by producing a molecular memory of past environmental exposures. Moderate heat, over long periods of time, induces an 'adaptive' epigenetic memory, resulting in a condition of 'resilience' to future heat exposures or cross-tolerance to other forms of toxic stress. In contrast, intense, life-threatening heat exposures, such as severe heat stroke, can result in a 'maladaptive' epigenetic memory that can place an organism at risk of later health complications. These cellular memories are coded by post-translational modifications of histones on the nucleosomes and/or by changes in DNA methylation. They operate by inducing changes in the level of gene transcription and therefore phenotype. The adaptive response to heat acclimation functions, in part, by facilitating transcription of essential heat shock proteins and exhibits a biphasic short programme (maintaining DNA integrity, followed by a long-term consolidation). The latter accelerates acclimation responses after de-acclimation. Although less studied, the maladaptive responses to heat stroke appear to be coded in long-lasting changes in DNA methylation near the promoter region of genes involved with basic cell function. Whether these memories are also encoded in histone modifications is not yet known. There is considerable evidence that both adaptive and maladaptive epigenetic responses to heat can be inherited, although most evidence comes from lower organisms. Future challenges include understanding the signalling mechanisms responsible and discovering new ways to promote adaptive responses while suppressing maladaptive responses to heat, as all life forms adapt to life on a warming planet.
Collapse
Affiliation(s)
- Kevin O. Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas L. Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
19
|
Arora H, Singh RK, Sharma S, Sharma N, Panchal A, Das T, Prasad A, Prasad M. DNA methylation dynamics in response to abiotic and pathogen stress in plants. PLANT CELL REPORTS 2022; 41:1931-1944. [PMID: 35833989 DOI: 10.1007/s00299-022-02901-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
DNA methylation is a dynamic epigenetic mechanism that plays a significant role in gene expression and also maintains chromatin stability. The process is conserved in both plants and animals, and crucial for development and stress responses. Differential DNA methylation during adverse environmental conditions or pathogen attack facilitates the selective expression of defense-related genes. Both stress-induced DNA hypomethylation and hypermethylation play beneficial roles in activating the defense response. These DNA marks may be carried to the next generation making the progenies 'primed' for abiotic and biotic stress responses. Over the recent years, rapid advancements in the area of high throughput sequencing have enabled the detection of methylation status at genome levels in several plant species. Epigenotyping offers an alternative tool to plant breeders in addition to conventional markers for the selection of the desired offspring. In this review, we briefly discuss the mechanism of DNA methylation, recent understanding of DNA methylation-mediated gene regulation during abiotic and biotic stress responses, and stress memory in plants.
Collapse
Affiliation(s)
- Heena Arora
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shambhavi Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Institute of Life Sciences, NALCO Nagar, Bhubaneswar, 751023, India
| | - Anurag Panchal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Tuhin Das
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
20
|
Molecular and epigenetic basis of heat stress responses and acclimatization in plants. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Li B, Yang C, An B, Wang H, Albaqami M, Abou-Elwafa SF, Xu L, Xu Y. Comparative transcriptomic and epigenetic analyses reveal conserved and divergent regulatory pathways in barley response to temperature stresses. PHYSIOLOGIA PLANTARUM 2022; 174:e13727. [PMID: 35657636 DOI: 10.1111/ppl.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
DNA methylation and histone modification enable plants to rapidly adapt to adverse temperature stresses, including low temperature (LT) and high temperature (HT) stress. In this study, we conducted physiological, epigenetic, and transcriptomic analyses of barley seedlings grown under control (22°C), mild low temperature (MLT, 14°C) and HT (38°C) conditions to elucidate the underlying molecular mechanisms. Compared to MLT, HT implies greater deleterious effects on barley seedlings' growth. The methylation-sensitive amplification polymorphism analysis showed that MLT induced more DNA methylation and HT more DNA demethylation compared to control. Besides, the higher levels of H3K9ac and H3K4me3 under HT compared to MLT stresses might lead to the loosening of chromatin and, subsequently, the activation of gene expression. Consistently, the transcriptome analysis revealed that there were more differentially expressed genes (DEGs) in plants subjected to HT stress than MLT stress compared to control. The common and unique pathways of these DEGs between MLT and HT were also analyzed. Transcription factors, such as ERF, bHLH, NAC, HSF, and MYB, were most involved in MLT and HT stress. The underlying gene regulation networks of epigenetic modulation-related genes were further explored by weight gene co-expression network analysis. Our study provides new insights into the understanding of epigenetic regulation responses to temperature stress in barley, which will lead to improved strategies for the development of cold- and heat-tolerant barley varieties for sustainable barley production in a climate-changing world.
Collapse
Affiliation(s)
- Bo Li
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Caixian Yang
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Bingzhuang An
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hongpan Wang
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Le Xu
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
22
|
Role of Epigenetics in Modulating Phenotypic Plasticity against Abiotic Stresses in Plants. Int J Genomics 2022; 2022:1092894. [PMID: 35747076 PMCID: PMC9213152 DOI: 10.1155/2022/1092894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Plants being sessile are always exposed to various environmental stresses, and to overcome these stresses, modifications at the epigenetic level can prove vital for their long-term survival. Epigenomics refers to the large-scale study of epigenetic marks on the genome, which include covalent modifications of histone tails (acetylation, methylation, phosphorylation, ubiquitination, and the small RNA machinery). Studies based on epigenetics have evolved over the years especially in understanding the mechanisms at transcriptional and posttranscriptional levels in plants against various environmental stimuli. Epigenomic changes in plants through induced methylation of specific genes that lead to changes in their expression can help to overcome various stress conditions. Recent studies suggested that epigenomics has a significant potential for crop improvement in plants. By the induction and modulation of various cellular processes like DNA methylation, histone modification, and biogenesis of noncoding RNAs, the plant genome can be activated which can help in achieving a quicker response against various plant stresses. Epigenetic modifications in plants allow them to adjust under varied environmental stresses by modulating their phenotypic plasticity and at the same time ensure the quality and yield of crops. The plasticity of the epigenome helps to adapt the plants during pre- and postdevelopmental processes. The variation in DNA methylation in different organisms exhibits variable phenotypic responses. The epigenetic changes also occur sequentially in the genome. Various studies indicated that environmentally stimulated epimutations produce variable responses especially in differentially methylated regions (DMR) that play a major role in the management of stress conditions in plants. Besides, it has been observed that environmental stresses cause specific changes in the epigenome that are closely associated with phenotypic modifications. However, the relationship between epigenetic modifications and phenotypic plasticity is still debatable. In this review, we will be discussing the role of various factors that allow epigenetic changes to modulate phenotypic plasticity against various abiotic stress in plants.
Collapse
|
23
|
Sun M, Yang Z, Liu L, Duan L. DNA Methylation in Plant Responses and Adaption to Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23136910. [PMID: 35805917 PMCID: PMC9266845 DOI: 10.3390/ijms23136910] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Due to their sessile state, plants are inevitably affected by and respond to the external environment. So far, plants have developed multiple adaptation and regulation strategies to abiotic stresses. One such system is epigenetic regulation, among which DNA methylation is one of the earliest and most studied regulatory mechanisms, which can regulate genome functioning and induce plant resistance and adaption to abiotic stresses. In this review, we outline the most recent findings on plant DNA methylation responses to drought, high temperature, cold, salt, and heavy metal stresses. In addition, we discuss stress memory regulated by DNA methylation, both in a transient way and the long-term memory that could pass to next generations. To sum up, the present review furnishes an updated account of DNA methylation in plant responses and adaptations to abiotic stresses.
Collapse
Affiliation(s)
| | | | - Li Liu
- Correspondence: (L.L.); (L.D.)
| | | |
Collapse
|
24
|
Saha D, Shaw AK, Datta S, Mitra J, Kar G. DNA hypomethylation is the plausible driver of heat stress adaptation in Linum usitatissimum. PHYSIOLOGIA PLANTARUM 2022; 174:e13689. [PMID: 35462427 DOI: 10.1111/ppl.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Heat stress has a significant impact on the climatic adaptation of flax, a cool-season economic crop. Genome-wide DNA methylation patterns are crucial for understanding how flax cultivars respond to heat adversities. It is worth noting that the DNA methylome in flax has yet to be investigated at the nucleotide level. Although heat stress above 40°C caused oxidative damage in flax leaves, 5-azacytidine, a hypomethylating agent, reduced this effect by 15%-24%. Differences in the expression of the LuMET1 (DNA methyltransferase) gene suggested that DNA methylation/demethylation may play a major role in the flax heat stress response. Thus, whole-genome bisulfite sequencing-derived DNA methylation profiles in flax, with or without heat stress and 5-azaC, were developed and analyzed here. In response to heat stress, a high percentage of significant differentially methylated regions (DMRs), particularly hypomethylated DMRs, were identified in the CHH nucleotide sequence context (H = A/T/C). Some of these DMRs overlapped with transposable element insertions. The majority of DMRs were discovered in intergenic regions, but several DMR loci were also found near genes relevant to heat stress response and epigenetic processes. These DMRs, in particular, are linked to CpG islands, implying a possible role in promoter methylation and gene silencing. The DMRs discovered in this study are crucial for understanding and identifying the key players in heat stress response in flax, which will help in developing climate-smart flax varieties.
Collapse
Affiliation(s)
- Dipnarayan Saha
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, India
| | - Arun Kumar Shaw
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, India
| | - Subhojit Datta
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, India
| | - Jiban Mitra
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, India
| | - Gouranga Kar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, India
| |
Collapse
|
25
|
Yadav NS, Titov V, Ayemere I, Byeon B, Ilnytskyy Y, Kovalchuk I. Multigenerational Exposure to Heat Stress Induces Phenotypic Resilience, and Genetic and Epigenetic Variations in Arabidopsis thaliana Offspring. FRONTIERS IN PLANT SCIENCE 2022; 13:728167. [PMID: 35419019 PMCID: PMC8996174 DOI: 10.3389/fpls.2022.728167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Plants are sedentary organisms that constantly sense changes in their environment and react to various environmental cues. On a short-time scale, plants respond through alterations in their physiology, and on a long-time scale, plants alter their development and pass on the memory of stress to the progeny. The latter is controlled genetically and epigenetically and allows the progeny to be primed for future stress encounters, thus increasing the likelihood of survival. The current study intended to explore the effects of multigenerational heat stress in Arabidopsis thaliana. Twenty-five generations of Arabidopsis thaliana were propagated in the presence of heat stress. The multigenerational stressed lineage F25H exhibited a higher tolerance to heat stress and elevated frequency of homologous recombination, as compared to the parallel control progeny F25C. A comparison of genomic sequences revealed that the F25H lineage had a three-fold higher number of mutations [single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs)] as compared control lineages, suggesting that heat stress induced genetic variations in the heat-stressed progeny. The F25H stressed progeny showed a 7-fold higher number of non-synonymous mutations than the F25C line. Methylome analysis revealed that the F25H stressed progeny showed a lower global methylation level in the CHH context than the control progeny. The F25H and F25C lineages were different from the parental control lineage F2C by 66,491 and 80,464 differentially methylated positions (DMPs), respectively. F25H stressed progeny displayed higher frequency of methylation changes in the gene body and lower in the body of transposable elements (TEs). Gene Ontology analysis revealed that CG-DMRs were enriched in processes such as response to abiotic and biotic stimulus, cell organizations and biogenesis, and DNA or RNA metabolism. Hierarchical clustering of these epimutations separated the heat stressed and control parental progenies into distinct groups which revealed the non-random nature of epimutations. We observed an overall higher number of epigenetic variations than genetic variations in all comparison groups, indicating that epigenetic variations are more prevalent than genetic variations. The largest difference in epigenetic and genetic variations was observed between control plants comparison (F25C vs. F2C), which clearly indicated that the spontaneous nature of epigenetic variations and heat-inducible nature of genetic variations. Overall, our study showed that progenies derived from multigenerational heat stress displayed a notable adaption in context of phenotypic, genotypic and epigenotypic resilience.
Collapse
|
26
|
Poór P, Nawaz K, Gupta R, Ashfaque F, Khan MIR. Ethylene involvement in the regulation of heat stress tolerance in plants. PLANT CELL REPORTS 2022; 41:675-698. [PMID: 33713206 DOI: 10.1007/s00299-021-02675-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/14/2021] [Indexed: 05/12/2023]
Abstract
Because of the rise in global temperature, heat stress has become a major concern for crop production. Heat stress deteriorates plant productivity and alters phenological and physiological responses that aid in precise monitoring and sensing of mild-to-severe transient heat stress. Plants have evolved several sophisticated mechanisms including hormone-signaling pathways to sense heat stimuli and acquire heat stress tolerance. In response to heat stress, ethylene, a gaseous hormone, is produced which is indispensable for plant growth and development and tolerance to various abiotic stresses including heat stress. The manipulation of ethylene in developing heat stress tolerance targeting ethylene biosynthesis and signaling pathways has brought promising out comes. Conversely increased ethylene biosynthesis and signaling seem to exhibit inhibitory effects in plant growth responses from primitive to maturity stages. This review mainly focuses on the recent studies of ethylene involvement in plant responses to heat stress and its functional regulation, and molecular mechanism underlying the plant responses in the mitigation of heat-induced damages. Furthermore, this review also describes the crosstalk between ethylene and other signaling molecules under heat stress and approaches to improve heat stress tolerance in plants.
Collapse
Affiliation(s)
- Peter Poór
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Kashif Nawaz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ravi Gupta
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Farha Ashfaque
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | |
Collapse
|
27
|
Malik S, Zhao D. Epigenetic Regulation of Heat Stress in Plant Male Reproduction. FRONTIERS IN PLANT SCIENCE 2022; 13:826473. [PMID: 35222484 PMCID: PMC8866763 DOI: 10.3389/fpls.2022.826473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/21/2022] [Indexed: 05/28/2023]
Abstract
In flowering plants, male reproductive development is highly susceptible to heat stress. In this mini-review, we summarized different anomalies in tapetum, microspores, and pollen grains during anther development under heat stress. We then discussed how epigenetic control, particularly DNA methylation, is employed to cope with heat stress in male reproduction. Further understanding of epigenetic mechanisms by which plants manage heat stress during male reproduction will provide new genetic engineering and molecular breeding tools for generating heat-resistant crops.
Collapse
|
28
|
Kourani M, Mohareb F, Rezwan FI, Anastasiadi M, Hammond JP. Genetic and Physiological Responses to Heat Stress in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:832147. [PMID: 35449889 PMCID: PMC9016328 DOI: 10.3389/fpls.2022.832147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/04/2022] [Indexed: 05/07/2023]
Abstract
Given the current rise in global temperatures, heat stress has become a major abiotic challenge affecting the growth and development of various crops and reducing their productivity. Brassica napus, the second largest source of vegetable oil worldwide, experiences a drastic reduction in seed yield and quality in response to heat. This review outlines the latest research that explores the genetic and physiological impact of heat stress on different developmental stages of B. napus with a special attention to the reproductive stages of floral progression, organogenesis, and post flowering. Several studies have shown that extreme temperature fluctuations during these crucial periods have detrimental effects on the plant and often leading to impaired growth and reduced seed production. The underlying mechanisms of heat stress adaptations and associated key regulatory genes are discussed. Furthermore, an overview and the implications of the polyploidy nature of B. napus and the regulatory role of alternative splicing in forming a priming-induced heat-stress memory are presented. New insights into the dynamics of epigenetic modifications during heat stress are discussed. Interestingly, while such studies are scarce in B. napus, opposite trends in expression of key genetic and epigenetic components have been identified in different species and in cultivars within the same species under various abiotic stresses, suggesting a complex role of these genes and their regulation in heat stress tolerance mechanisms. Additionally, omics-based studies are discussed with emphasis on the transcriptome, proteome and metabolome of B. napus, to gain a systems level understanding of how heat stress alters its yield and quality traits. The combination of omics approaches has revealed crucial interactions and regulatory networks taking part in the complex machinery of heat stress tolerance. We identify key knowledge gaps regarding the impact of heat stress on B. napus during its yield determining reproductive stages, where in-depth analysis of this subject is still needed. A deeper knowledge of heat stress response components and mechanisms in tissue specific models would serve as a stepping-stone to gaining insights into the regulation of thermotolerance that takes place in this important crop species and support future breeding of heat tolerant crops.
Collapse
Affiliation(s)
- Mariam Kourani
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - Fady Mohareb
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
- *Correspondence: Fady Mohareb,
| | - Faisal I. Rezwan
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - Maria Anastasiadi
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - John P. Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
- John P. Hammond,
| |
Collapse
|
29
|
Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, Habib ur Rahman M, Brestic M, Ratnasekera D, Lamilla-Tamayo L, Al-Ashkar I, EL Sabagh A. Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:767150. [PMID: 34975951 PMCID: PMC8714756 DOI: 10.3389/fpls.2021.767150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 05/16/2023]
Abstract
Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
- Horticultural Sciences Department, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, United States
| | | | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib Anjum
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Habib ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University Bonn, Bonn, Germany
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
30
|
DNA methylation and histone modifications induced by abiotic stressors in plants. Genes Genomics 2021; 44:279-297. [PMID: 34837631 DOI: 10.1007/s13258-021-01191-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND A review of research shows that methylation in plants is more complex and sophisticated than in microorganisms and animals. Overall, studies on the effects of abiotic stress on epigenetic modifications in plants are still scarce and limited to few species. Epigenetic regulation of plant responses to environmental stresses has not been elucidated. This study summarizes key effects of abiotic stressors on DNA methylation and histone modifications in plants. DISCUSSION Plant DNA methylation and histone modifications in responses to abiotic stressors varied and depended on the type and level of stress, plant tissues, age, and species. A critical analysis of the literature available revealed that 44% of the epigenetic modifications induced by abiotic stressors in plants involved DNA hypomethylation, 40% DNA hypermethylation, and 16% histone modification. The epigenetic changes in plants might be underestimated since most authors used methods such as methylation-sensitive amplification polymorphism (MSAP), High performance liquid chromatography (HPLC), and immunolabeling that are less sensitive compared to bisulfite sequencing and single-base resolution methylome analyses. More over, mechanisms underlying epigenetic changes in plants have not yet been determined since most reports showed only the level or/and distribution of DNA methylation and histone modifications. CONCLUSIONS Various epigenetic mechanisms are involved in response to abiotic stressors, and several of them are still unknown. Integrated analysis of the changes in the genome by omic approaches should help to identify novel components underlying mechanisms involved in DNA methylation and histone modifications associated with plant response to environmental stressors.
Collapse
|
31
|
Singh D, Chaudhary P, Taunk J, Kumar Singh C, Sharma S, Singh VJ, Singh D, Chinnusamy V, Yadav R, Pal M. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6836-6855. [PMID: 34302734 DOI: 10.1093/jxb/erab337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Climate change has escalated abiotic stresses, leading to adverse effects on plant growth and development, eventually having deleterious consequences on crop productivity. Environmental stresses induce epigenetic changes, namely cytosine DNA methylation and histone post-translational modifications, thus altering chromatin structure and gene expression. Stable epigenetic changes are inheritable across generations and this enables plants to adapt to environmental changes (epipriming). Hence, epigenomes serve as a good source of additional tier of variability for development of climate-smart crops. Epigenetic resources such as epialleles, epigenetic recombinant inbred lines (epiRILs), epigenetic quantitative trait loci (epiQTLs), and epigenetic hybrids (epihybrids) can be utilized in epibreeding for improving stress tolerance of crops. Epigenome engineering is also gaining momentum for developing sustainable epimarks associated with important agronomic traits. Different epigenome editing tools are available for creating, erasing, and reading such epigenetic codes in plant genomes. However, epigenome editing is still understudied in plants due to its complex nature. Epigenetic interventions such as epi-fingerprinting can be exploited in the near future for health and quality assessment of crops under stress conditions. Keeping in view the challenges and opportunities associated with this important technology, the present review intends to enhance understanding of stress-induced epigenetic changes in plants and its prospects for development of climate-ready crops.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Shristi Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Vikram Jeet Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajbir Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
32
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
33
|
Epigenetic control of abiotic stress signaling in plants. Genes Genomics 2021; 44:267-278. [PMID: 34515950 DOI: 10.1007/s13258-021-01163-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Although plants may be regularly exposed to various abiotic stresses, including drought, salt, cold, heat, heavy metals, and UV-B throughout their lives, it is not possible to actively escape from such stresses due to the immobile nature of plants. To overcome adverse environmental stresses, plants have developed adaptive systems that allow appropriate responses to diverse environmental cues; such responses can be achieved by fine-tuning or controlling genetic and epigenetic regulatory systems. Epigenetic mechanisms such as DNA or histone modifications and modulation of chromatin accessibility have been shown to regulate the expression of stress-responsive genes in struggles against abiotic stresses. OBJECTIVE Herein, the current progress in elucidating the epigenetic regulation of abiotic stress signaling in plants has been summarized in order to further understand the systems plants utilize to effectively respond to abiotic stresses. METHODS This review focuses on the action mechanisms of various components that epigenetically regulate plant abiotic stress responses, mainly in terms of DNA methylation, histone methylation/acetylation, and chromatin remodeling. CONCLUSIONS This review can be considered a basis for further research into understanding the epigenetic control system for abiotic stress responses in plants. Moreover, the knowledge of such systems can be effectively applied in developing novel methods to generate abiotic stress resistant crops.
Collapse
|
34
|
Bourgine B, Guihur A. Heat Shock Signaling in Land Plants: From Plasma Membrane Sensing to the Transcription of Small Heat Shock Proteins. FRONTIERS IN PLANT SCIENCE 2021; 12:710801. [PMID: 34434209 PMCID: PMC8381196 DOI: 10.3389/fpls.2021.710801] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/06/2021] [Indexed: 05/08/2023]
Abstract
Heat stress events are major factors limiting crop productivity. During summer days, land plants must anticipate in a timely manner upcoming mild and severe temperature. They respond by accumulating protective heat-shock proteins (HSPs), conferring acquired thermotolerance. All organisms synthetize HSPs; many of which are members of the conserved chaperones families. This review describes recent advances in plant temperature sensing, signaling, and response. We highlight the pathway from heat perception by the plasma membrane through calcium channels, such as cyclic nucleotide-gated channels, to the activation of the heat-shock transcription factors (HSFs). An unclear cellular signal activates HSFs, which act as essential regulators. In particular, the HSFA subfamily can bind heat shock elements in HSP promoters and could mediate the dissociation of bound histones, leading to HSPs transcription. Although plants can modulate their transcriptome, proteome, and metabolome to protect the cellular machinery, HSP chaperones prevent, use, and revert the formation of misfolded proteins, thereby avoiding heat-induced cell death. Remarkably, the HSP20 family is mostly tightly repressed at low temperature, suggesting that a costly mechanism can become detrimental under unnecessary conditions. Here, the role of HSP20s in response to HS and their possible deleterious expression at non-HS temperatures is discussed.
Collapse
Affiliation(s)
| | - Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Dalakouras A, Vlachostergios D. Epigenetic approaches to crop breeding: current status and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5356-5371. [PMID: 34017985 DOI: 10.1093/jxb/erab227] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/18/2021] [Indexed: 05/10/2023]
Abstract
In order to tackle the cumulative adverse effects of global climate change, reduced farmland, and heightened needs of an ever-increasing world population, modern agriculture is in urgent search of solutions that can ensure world food security and sustainable development. Classical crop breeding is still a powerful method to obtain crops with valued agronomical traits, but its potential is gradually being compromised by the menacing decline of genetic variation. Resorting to the epigenome as a source of variation could serve as a promising alternative. Here, we discuss current status of epigenetics-mediated crop breeding (epibreeding), highlight its advances and limitations, outline currently available methodologies, and propose novel RNA-based strategies to modify the epigenome in a gene-specific and transgene-free manner.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- Institute of Industrial and Forage Crops, HAO-DEMETER, 41335 Larissa, Greece
- Institute of Plant Breeding and Genetic Resources, HAO-DEMETER, 57001 Thessaloniki, Greece
| | | |
Collapse
|
36
|
Singh RK, Prasad M. Delineating the epigenetic regulation of heat and drought response in plants. Crit Rev Biotechnol 2021; 42:548-561. [PMID: 34289772 DOI: 10.1080/07388551.2021.1946004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Being sessile in nature, plants cannot overlook the incursion of unfavorable environmental conditions, including heat and drought. Heat and drought severely affect plant growth, development, reproduction and therefore productivity which poses a severe threat to global food security. Plants respond to these hostile environmental circumstances by rearranging their genomic and molecular architecture. One such modification commonly known as epigenetic changes involves the perishable to inheritable changes in DNA or DNA-binding histone proteins leading to modified chromatin organization. Reversible epigenetic modifications include DNA methylation, exchange of histone variants, histone methylation, histone acetylation, ATP-dependent nucleosome remodeling, and others. These modifications are employed to regulate the spatial and temporal expression of genes in response to external stimuli or specific developmental requirements. Understanding the epigenetic regulation of stress-related gene expression in response to heat and drought would commence manifold avenues for crop improvement through molecular breeding or biotechnological approaches.
Collapse
Affiliation(s)
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
37
|
Gogolev YV, Ahmar S, Akpinar BA, Budak H, Kiryushkin AS, Gorshkov VY, Hensel G, Demchenko KN, Kovalchuk I, Mora-Poblete F, Muslu T, Tsers ID, Yadav NS, Korzun V. OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. PLANTS (BASEL, SWITZERLAND) 2021; 10:1423. [PMID: 34371624 PMCID: PMC8309286 DOI: 10.3390/plants10071423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022]
Abstract
The incredible success of crop breeding and agricultural innovation in the last century greatly contributed to the Green Revolution, which significantly increased yields and ensures food security, despite the population explosion. However, new challenges such as rapid climate change, deteriorating soil, and the accumulation of pollutants require much faster responses and more effective solutions that cannot be achieved through traditional breeding. Further prospects for increasing the efficiency of agriculture are undoubtedly associated with the inclusion in the breeding strategy of new knowledge obtained using high-throughput technologies and new tools in the future to ensure the design of new plant genomes and predict the desired phenotype. This article provides an overview of the current state of research in these areas, as well as the study of soil and plant microbiomes, and the prospective use of their potential in a new field of microbiome engineering. In terms of genomic and phenomic predictions, we also propose an integrated approach that combines high-density genotyping and high-throughput phenotyping techniques, which can improve the prediction accuracy of quantitative traits in crop species.
Collapse
Affiliation(s)
- Yuri V. Gogolev
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | | | - Hikmet Budak
- Montana BioAg Inc., Missoula, MT 59802, USA; (B.A.A.); (H.B.)
| | - Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Vladimir Y. Gorshkov
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, 40225 Dusseldorf, Germany;
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | - Tugdem Muslu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey;
| | - Ivan D. Tsers
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Viktor Korzun
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany
| |
Collapse
|
38
|
Entrambasaguas L, Ruocco M, Verhoeven KJF, Procaccini G, Marín-Guirao L. Gene body DNA methylation in seagrasses: inter- and intraspecific differences and interaction with transcriptome plasticity under heat stress. Sci Rep 2021; 11:14343. [PMID: 34253765 PMCID: PMC8275578 DOI: 10.1038/s41598-021-93606-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
The role of DNA methylation and its interaction with gene expression and transcriptome plasticity is poorly understood, and current insight comes mainly from studies in very few model plant species. Here, we study gene body DNA methylation (gbM) and gene expression patterns in ecotypes from contrasting thermal environments of two marine plants with contrasting life history strategies in order to explore the potential role epigenetic mechanisms could play in gene plasticity and responsiveness to heat stress. In silico transcriptome analysis of CpGO/E ratios suggested that the bulk of Posidonia oceanica and Cymodocea nodosa genes possess high levels of intragenic methylation. We also observed a correlation between gbM and gene expression flexibility: genes with low DNA methylation tend to show flexible gene expression and plasticity under changing conditions. Furthermore, the empirical determination of global DNA methylation (5-mC) showed patterns of intra and inter-specific divergence that suggests a link between methylation level and the plants' latitude of origin and life history. Although we cannot discern whether gbM regulates gene expression or vice versa, or if other molecular mechanisms play a role in facilitating transcriptome responsiveness, our findings point to the existence of a relationship between gene responsiveness and gbM patterns in marine plants.
Collapse
Affiliation(s)
- Laura Entrambasaguas
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Miriam Ruocco
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Koen J F Verhoeven
- Terrestrial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Gabriele Procaccini
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | - Lazaro Marín-Guirao
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, C/Varadero, 30740, San Pedro del Pinatar, Spain
| |
Collapse
|
39
|
Mladenov V, Fotopoulos V, Kaiserli E, Karalija E, Maury S, Baranek M, Segal N, Testillano PS, Vassileva V, Pinto G, Nagel M, Hoenicka H, Miladinović D, Gallusci P, Vergata C, Kapazoglou A, Abraham E, Tani E, Gerakari M, Sarri E, Avramidou E, Gašparović M, Martinelli F. Deciphering the Epigenetic Alphabet Involved in Transgenerational Stress Memory in Crops. Int J Mol Sci 2021; 22:7118. [PMID: 34281171 PMCID: PMC8268041 DOI: 10.3390/ijms22137118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Although epigenetic modifications have been intensely investigated over the last decade due to their role in crop adaptation to rapid climate change, it is unclear which epigenetic changes are heritable and therefore transmitted to their progeny. The identification of epigenetic marks that are transmitted to the next generations is of primary importance for their use in breeding and for the development of new cultivars with a broad-spectrum of tolerance/resistance to abiotic and biotic stresses. In this review, we discuss general aspects of plant responses to environmental stresses and provide an overview of recent findings on the role of transgenerational epigenetic modifications in crops. In addition, we take the opportunity to describe the aims of EPI-CATCH, an international COST action consortium composed by researchers from 28 countries. The aim of this COST action launched in 2020 is: (1) to define standardized pipelines and methods used in the study of epigenetic mechanisms in plants, (2) update, share, and exchange findings in epigenetic responses to environmental stresses in plants, (3) develop new concepts and frontiers in plant epigenetics and epigenomics, (4) enhance dissemination, communication, and transfer of knowledge in plant epigenetics and epigenomics.
Collapse
Affiliation(s)
- Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos 3036, Cyprus;
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Erna Karalija
- Laboratory for Plant Physiology, Department for Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Stephane Maury
- INRAe, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, 45067 Orléans, France;
| | - Miroslav Baranek
- Mendeleum—Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Naama Segal
- Israel Oceanographic and Limnological Research, The National Center for Mariculture (NCM), P.O.B. 1212, Eilat 88112, Israel;
| | - Pilar S. Testillano
- Center of Biological Research Margarita Salas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Biology Department, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany;
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany;
| | - Dragana Miladinović
- Laboratory for Biotechnology, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—CS5000833882 Villenave d’Ornon, 33076 Bordeaux, France;
| | - Chiara Vergata
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-Dimitra (HAO-Dimitra), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece;
| | - Eleni Abraham
- Laboratory of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Evaggelia Avramidou
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Mateo Gašparović
- Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, 10000 Zagreb, Croatia;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
40
|
In Response to Abiotic Stress, DNA Methylation Confers EpiGenetic Changes in Plants. PLANTS 2021; 10:plants10061096. [PMID: 34070712 PMCID: PMC8227271 DOI: 10.3390/plants10061096] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Epigenetics involves the heritable changes in patterns of gene expression determined by developmental and abiotic stresses, i.e., drought, cold, salinity, trace metals, and heat. Gene expression is driven by changes in DNA bases, histone proteins, the biogenesis of ncRNA, and changes in the nucleotide sequence. To cope with abiotic stresses, plants adopt certain changes driven by a sophisticated biological system. DNA methylation is a primary mechanism for epigenetic variation, which can induce phenotypic alterations in plants under stress. Some of the stress-driven changes in plants are temporary, while some modifications may be stable and inheritable to the next generations to allow them to cope with such extreme stress challenges in the future. In this review, we discuss the pivotal role of epigenetically developed phenotypic characteristics in plants as an evolutionary process participating in adaptation and tolerance responses to abiotic and biotic stresses that alter their growth and development. We emphasize the molecular process underlying changes in DNA methylation, differential variation for different species, the roles of non-coding RNAs in epigenetic modification, techniques for studying DNA methylation, and its role in crop improvement in tolerance to abiotic stress (drought, salinity, and heat). We summarize DNA methylation as a significant future research priority for tailoring crops according to various challenging environmental issues.
Collapse
|
41
|
Regulation of DNA (de)Methylation Positively Impacts Seed Germination during Seed Development under Heat Stress. Genes (Basel) 2021; 12:genes12030457. [PMID: 33807066 PMCID: PMC8005211 DOI: 10.3390/genes12030457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Seed development needs the coordination of multiple molecular mechanisms to promote correct tissue development, seed filling, and the acquisition of germination capacity, desiccation tolerance, longevity, and dormancy. Heat stress can negatively impact these processes and upon the increase of global mean temperatures, global food security is threatened. Here, we explored the impact of heat stress on seed physiology, morphology, gene expression, and methylation on three stages of seed development. Notably, Arabidopsis Col-0 plants under heat stress presented a decrease in germination capacity as well as a decrease in longevity. We observed that upon mild stress, gene expression and DNA methylation were moderately affected. Nevertheless, upon severe heat stress during seed development, gene expression was intensively modified, promoting heat stress response mechanisms including the activation of the ABA pathway. By analyzing candidate epigenetic markers using the mutants’ physiological assays, we observed that the lack of DNA demethylation by the ROS1 gene impaired seed germination by affecting germination-related gene expression. On the other hand, we also observed that upon severe stress, a large proportion of differentially methylated regions (DMRs) were located in the promoters and gene sequences of germination-related genes. To conclude, our results indicate that DNA (de)methylation could be a key regulatory process to ensure proper seed germination of seeds produced under heat stress.
Collapse
|
42
|
Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. Int J Mol Sci 2020; 22:ijms22010117. [PMID: 33374376 PMCID: PMC7795586 DOI: 10.3390/ijms22010117] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 01/05/2023] Open
Abstract
Global warming has increased the frequency of extreme high temperature events. High temperature is a major abiotic stress that limits the growth and production of plants. Therefore, the plant response to heat stress (HS) has been a focus of research. However, the plant response to HS involves complex physiological traits and molecular or gene networks that are not fully understood. Here, we review recent progress in the physiological (photosynthesis, cell membrane thermostability, oxidative damage, and others), transcriptional, and post-transcriptional (noncoding RNAs) regulation of the plant response to HS. We also summarize advances in understanding of the epigenetic regulation (DNA methylation, histone modification, and chromatin remodeling) and epigenetic memory underlying plant–heat interactions. Finally, we discuss the challenges and opportunities of future research in the plant response to HS.
Collapse
|
43
|
Liu J, He Z. Small DNA Methylation, Big Player in Plant Abiotic Stress Responses and Memory. FRONTIERS IN PLANT SCIENCE 2020; 11:595603. [PMID: 33362826 PMCID: PMC7758401 DOI: 10.3389/fpls.2020.595603] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/18/2020] [Indexed: 05/12/2023]
Abstract
DNA methylation is a conserved epigenetic mark that plays important roles in maintaining genome stability and regulating gene expression. As sessile organisms, plants have evolved sophisticated regulatory systems to endure or respond to diverse adverse abiotic environmental challenges, i.e., abiotic stresses, such as extreme temperatures (cold and heat), drought and salinity. Plant stress responses are often accompanied by changes in chromatin modifications at diverse responsive loci, such as 5-methylcytosine (5mC) and N 6-methyladenine (6mA) DNA methylation. Some abiotic stress responses are memorized for several hours or days through mitotic cell divisions and quickly reset to baseline levels after normal conditions are restored, which is referred to as somatic memory. In some cases, stress-induced chromatin marks are meiotically heritable and can impart the memory of stress exposure from parent plants to at least the next stress-free offspring generation through the mechanisms of transgenerational epigenetic inheritance, which may offer the descendants the potential to be adaptive for better fitness. In this review, we briefly summarize recent achievements regarding the establishment, maintenance and reset of DNA methylation, and highlight the diverse roles of DNA methylation in plant responses to abiotic stresses. Further, we discuss the potential role of DNA methylation in abiotic stress-induced somatic memory and transgenerational inheritance. Future research directions are proposed to develop stress-tolerant engineered crops to reduce the negative effects of abiotic stresses.
Collapse
Affiliation(s)
- Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
44
|
Chaudhary S, Devi P, Bhardwaj A, Jha UC, Sharma KD, Prasad PVV, Siddique KHM, Bindumadhava H, Kumar S, Nayyar H. Identification and Characterization of Contrasting Genotypes/Cultivars for Developing Heat Tolerance in Agricultural Crops: Current Status and Prospects. FRONTIERS IN PLANT SCIENCE 2020; 11:587264. [PMID: 33193540 PMCID: PMC7642017 DOI: 10.3389/fpls.2020.587264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/14/2020] [Indexed: 05/19/2023]
Abstract
Rising global temperatures due to climate change are affecting crop performance in several regions of the world. High temperatures affect plants at various organizational levels, primarily accelerating phenology to limit biomass production and shortening reproductive phase to curtail flower and fruit numbers, thus resulting in severe yield losses. Besides, heat stress also disrupts normal growth, development, cellular metabolism, and gene expression, which alters shoot and root structures, branching patterns, leaf surface and orientation, and anatomical, structural, and functional aspects of leaves and flowers. The reproductive growth stage is crucial in plants' life cycle, and susceptible to high temperatures, as reproductive processes are negatively impacted thus reducing crop yield. Genetic variation exists among genotypes of various crops to resist impacts of heat stress. Several screening studies have successfully phenotyped large populations of various crops to distinguish heat-tolerant and heat-sensitive genotypes using various traits, related to shoots (including leaves), flowers, fruits (pods, spikes, spikelets), and seeds (or grains), which have led to direct release of heat-tolerant cultivars in some cases (such as chickpea). In the present review, we discuss examples of contrasting genotypes for heat tolerance in different crops, involving many traits related to thermotolerance in leaves (membrane thermostability, photosynthetic efficiency, chlorophyll content, chlorophyll fluorescence, stomatal activity), flowers (pollen viability, pollen germination, fertilization, ovule viability), roots (architecture), biomolecules (antioxidants, osmolytes, phytohormones, heat-shock proteins, other stress proteins), and "omics" (phenomics, transcriptomics, genomics) approaches. The traits linked to heat tolerance can be introgressed into high yielding but heat-sensitive genotypes of crops to enhance their thermotolerance. Involving these traits will be useful for screening contrasting genotypes and would pave the way for characterizing the underlying molecular mechanisms, which could be valuable for engineering plants with enhanced thermotolerance. Wherever possible, we discussed breeding and biotechnological approaches for using these traits to develop heat-tolerant genotypes of various food crops.
Collapse
Affiliation(s)
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | | | | | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh (CSK HP) Agricultural University, Palampur, India
| | | | | | - H. Bindumadhava
- World Vegetable Center, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Shiv Kumar
- International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
45
|
Gahlaut V, Samtani H, Khurana P. Genome-wide identification and expression profiling of cytosine-5 DNA methyltransferases during drought and heat stress in wheat (Triticum aestivum). Genomics 2020; 112:4796-4807. [PMID: 32890700 DOI: 10.1016/j.ygeno.2020.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 01/25/2023]
Abstract
DNA methylation is a potential epigenetic mechanism that regulates genome stability, development, and stress mitigation in plants. It is mediated by cytosine-5 DNA methyltransferases (C5-MTases). We identified 52 wheat C5-MTases; and based on domain structure and phylogenetics, these 52 C5-MTases were classified into four sub-families including MET, CMT, DRM and DNMT2; and were distributed on 18 chromosomes. Cis-acting regulatory elements analysis identified abiotic stress-responsive, phytohormone-responsive, development-related and light-related elements in the promoters of TaC5-MTases. We also examined the transcript abundance of TaC5-MTases in different tissues, developmental stages and under abiotic stresses. Notably, most of the TaC5-MTases (TaCMT2, TaCMT3b, TaCMT3c, TaMET1, TaDRM10, TaDNMT2) showed differential regulation of their transcript abundance during drought and heat stress. Overall, the above results provide significant insights into the expression and the probable functions of TaC5-MTases and will also expedite future research programs to explore the mechanisms of epigenetic regulation in wheat.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
46
|
DNA methylation mediates differentiation in thermal responses of Pacific oyster (Crassostrea gigas) derived from different tidal levels. Heredity (Edinb) 2020; 126:10-22. [PMID: 32807851 DOI: 10.1038/s41437-020-0351-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 07/06/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Epigenetic mechanisms such as DNA methylation have the potential to affect organism acclimatization and adaptation to environmental changes by influencing their phenotypic plasticity; however, little is known about the role of methylation in the adaptive phenotypic divergence of marine invertebrates. Therefore, in this study, a typical intertidal species, the Pacific oyster (Crassostrea gigas), was selected to investigate the epigenetic mechanism of phenotypic plasticity in marine invertebrates. Intertidal and subtidal oysters subjected to one-generation common garden experiments and exhibited phenotypic divergence were used. The methylation landscape of both groups of oysters was investigated under temperate and high temperature. The two tidal oysters exhibited divergent methylation patterns, regardless of the temperature, which was mainly original environment-induced. Intertidal samples exhibited significant hypomethylation and more plasticity of methylation in response to heat shock, while subtidal samples showed hypermethylation and less plasticity. Combined with RNA-seq data, a positive relationship between methylation and expression in gene bodies was detected on a genome-wide scale. In addition, approximately 11% and 7% of differentially expressed genes showed significant methylation variation under high temperatures in intertidal and subtidal samples, respectively. Genes related to apoptosis and organism development may be regulated by methylation in response to high temperature in intertidal oysters, whereas oxidation-reduction and ion homeostasis-related genes were involved in subtidal oysters. The results also suggest that DNA methylation mediates phenotypic divergence in oysters adapting to different environments. This study provides new insight into the epigenetic mechanisms underlying phenotypic plasticity in adaptation to rapid climate change in marine organisms.
Collapse
|
47
|
Varotto S, Tani E, Abraham E, Krugman T, Kapazoglou A, Melzer R, Radanović A, Miladinović D. Epigenetics: possible applications in climate-smart crop breeding. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5223-5236. [PMID: 32279074 PMCID: PMC7475248 DOI: 10.1093/jxb/eraa188] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/09/2020] [Indexed: 05/23/2023]
Abstract
To better adapt transiently or lastingly to stimuli from the surrounding environment, the chromatin states in plant cells vary to allow the cells to fine-tune their transcriptional profiles. Modifications of chromatin states involve a wide range of post-transcriptional histone modifications, histone variants, DNA methylation, and activity of non-coding RNAs, which can epigenetically determine specific transcriptional outputs. Recent advances in the area of '-omics' of major crops have facilitated identification of epigenetic marks and their effect on plant response to environmental stresses. As most epigenetic mechanisms are known from studies in model plants, we summarize in this review recent epigenetic studies that may be important for improvement of crop adaptation and resilience to environmental changes, ultimately leading to the generation of stable climate-smart crops. This has paved the way for exploitation of epigenetic variation in crop breeding.
Collapse
Affiliation(s)
- Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals, and the Environment, University of Padova, Agripolis, Viale dell’Università, Padova, Italy
| | - Eleni Tani
- Department of Crop Science, Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Athens, Greece
| | - Eleni Abraham
- Laboratory of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Demeter (HAO-Demeter), Lykovrysi, Greece
| | - Rainer Melzer
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
48
|
Lamelas L, Valledor L, Escandón M, Pinto G, Cañal MJ, Meijón M. Integrative analysis of the nuclear proteome in Pinus radiata reveals thermopriming coupled to epigenetic regulation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2040-2057. [PMID: 31781741 PMCID: PMC7094079 DOI: 10.1093/jxb/erz524] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
Despite it being an important issue in the context of climate change, for most plant species it is not currently known how abiotic stresses affect nuclear proteomes and mediate memory effects. This study examines how Pinus radiata nuclei respond, adapt, 'remember', and 'learn' from heat stress. Seedlings were heat-stressed at 45 °C for 10 d and then allowed to recover. Nuclear proteins were isolated and quantified by nLC-MS/MS, the dynamics of tissue DNA methylation were examined, and the potential acquired memory was analysed in recovered plants. In an additional experiment, the expression of key gene genes was also quantified. Specific nuclear heat-responsive proteins were identified, and their biological roles were evaluated using a systems biology approach. In addition to heat-shock proteins, several clusters involved in regulation processes were discovered, such as epigenomic-driven gene regulation, some transcription factors, and a variety of RNA-associated functions. Nuclei exhibited differential proteome profiles across the phases of the experiment, with histone H2A and methyl cycle enzymes in particular being accumulated in the recovery step. A thermopriming effect was possibly linked to H2A abundance and over-accumulation of spliceosome elements in recovered P. radiata plants. The results suggest that epigenetic mechanisms play a key role in heat-stress tolerance and priming mechanisms.
Collapse
Affiliation(s)
- Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Escandón
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Gloria Pinto
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
49
|
|
50
|
Identification, Evolution, and Expression Profiling of Histone Lysine Methylation Moderators in Brassica rapa. PLANTS 2019; 8:plants8120526. [PMID: 31756989 PMCID: PMC6963287 DOI: 10.3390/plants8120526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
Abstract
Histone modifications, such as methylation and demethylation, are vital for regulating chromatin structure, thus affecting its expression patterns. The objective of this study is to understand the phylogenetic relationships, genomic organization, diversification of motif modules, gene duplications, co-regulatory network analysis, and expression dynamics of histone lysine methyltransferases and histone demethylase in Brassica rapa. We identified 60 SET (HKMTases), 53 JmjC, and 4 LSD (HDMases) genes in B. rapa. The domain composition analysis subcategorized them into seven and nine subgroups, respectively. Duplication analysis for paralogous pairs of SET and JmjC (eight and nine pairs, respectively) exhibited variation. Interestingly, three pairs of SET exhibited Ka/Ks > 1.00 values, signifying positive selection, whereas the remaining underwent purifying selection with values less than 1.00. Furthermore, RT-PCR validation analysis and RNA-sequence data acquired on six different tissues (i.e., leaf, stem, callus, silique, flower, and root) revealed dynamic expression patterns. This comprehensive study on the abundance, classification, co-regulatory network analysis, gene duplication, and responses to heat and cold stress of SET and JmjC provides insights into the structure and diversification of these family members in B. rapa. This study will be helpful to reveal functions of these putative SET and JmjC genes in B. rapa.
Collapse
|