1
|
Ghallab A, Mandorfer M, Stirnimann G, Geyer J, Lindström E, Luedde T, van der Merwe S, Rashidi-Alavijeh J, Schmidt H, Karpen SJ, Fickert P, Trauner M, Hengstler JG, Dawson PA. Enteronephrohepatic Circulation of Bile Acids and Therapeutic Potential of Systemic Bile Acid Transporter Inhibitors. J Hepatol 2025:S0168-8278(25)02207-X. [PMID: 40414504 DOI: 10.1016/j.jhep.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
Together with carriers in liver and small intestine, kidney transporters function to conserve and compartmentalize bile acids in the enteronephrohepatic circulation. In patients with liver disease, systemic bile acid levels are elevated, undergo increased renal glomerular filtration, and contribute to the pathogenesis of cholemic nephropathy and acute kidney injury. In this review, we describe mechanisms for renal bile acid transport and highlight very recent discoveries that challenge current paradigms for the pathogenesis of cholemic nephropathy and renal tubule cast formation. We also discuss the therapeutic potential of inhibiting the kidney apical sodium-dependent bile acid transporter (ASBT) to redirect bile acids into urine for elimination, reduce hepatobiliary accumulation and systemic levels of bile acids, and treat cholemic nephropathy. In conclusion, a deeper understanding of the enteronephrohepatic bile acid axis is providing insights into novel strategies to protect both liver and kidney in patients with liver disease.
Collapse
Affiliation(s)
- Ahmed Ghallab
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany; Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.
| | - Mattias Mandorfer
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Guido Stirnimann
- University Clinic for Visceral Surgery and Medicine, Inselspital University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center Seltersberg, Schubertstr. 81, 35392 Giessen, Germany
| | | | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, 40225 Dusseldorf, Germany
| | | | - Jassin Rashidi-Alavijeh
- Clinic for Gastroenterology, Hepatology and Transplantation Medicine, University hospital Essen, Essen, Germany; Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Hartmut Schmidt
- Clinic for Gastroenterology, Hepatology and Transplantation Medicine, University hospital Essen, Essen, Germany; Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Saul J Karpen
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Peter Fickert
- Department of Medicine, Division of Gastroenterology and Hepatology, Medical University Graz, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
2
|
Fuchs CD, Simbrunner B, Baumgartner M, Campbell C, Reiberger T, Trauner M. Bile acid metabolism and signalling in liver disease. J Hepatol 2025; 82:134-153. [PMID: 39349254 DOI: 10.1016/j.jhep.2024.09.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Bile acids (BAs) serve as signalling molecules, efficiently regulating their own metabolism and transport, as well as key aspects of lipid and glucose homeostasis. BAs shape the gut microbial flora and conversely are metabolised by microbiota. Disruption of BA transport, metabolism and physiological signalling functions contribute to the pathogenesis and progression of a wide range of liver diseases including cholestatic disorders and MASLD (metabolic dysfunction-associated steatotic liver disease), as well as hepatocellular and cholangiocellular carcinoma. Additionally, impaired BA signalling may also affect the intestine and kidney, thereby contributing to failure of gut integrity and driving the progression and complications of portal hypertension, cholemic nephropathy and the development of extrahepatic malignancies such as colorectal cancer. In this review, we will summarise recent advances in the understanding of BA signalling, metabolism and transport, focusing on transcriptional regulation and novel BA-focused therapeutic strategies for cholestatic and metabolic liver diseases.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Clarissa Campbell
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Ghallab A, Kunz S, Drossel C, Billo V, Friebel A, Georg M, Göttlich R, Hobloss Z, Hassan R, Myllys M, Seddek AL, Abdelmageed N, Dawson PA, Lindström E, Hoehme S, Hengstler JG, Geyer J. Validation of NBD-coupled taurocholic acid for intravital analysis of bile acid transport in liver and kidney of mice. EXCLI JOURNAL 2024; 23:1330-1352. [PMID: 39574965 PMCID: PMC11579514 DOI: 10.17179/excli2024-7707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024]
Abstract
Fluorophore-coupled bile acids (BA) represent an important tool for intravital analysis of BA flux in animal models of cholestatic diseases. However, addition of a fluorophore to a BA may alter transport properties. We developed and validated a 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole-coupled taurocholic acid (3β-NBD-TCA) as a probe for intravital analysis of BA homeostasis. We compared transport of 3β-NBD-TCA to [3H]-TCA in HEK293 cells stably expressing the mouse hepatic or renal BA carriers mNtcp or mAsbt, respectively. We also studied distribution kinetics intravitally in livers and kidneys of anesthetized wildtype and mOatp1a/1b cluster knockout mice (OatpKO) with and without administration of the Ntcp inhibitor Myrcludex B and the ASBT inhibitor AS0369. In vitro, 3β-NBD-TCA and [3H]-TCA showed comparable concentration- and time-dependent transport via mNtcp and mAsbt as well as similar inhibition kinetics for Myrcludex B and AS0369. Intravital analysis in the livers of wildtype and OatpKO mice revealed contribution of both mNtcp and mOatp1a/1b in the 3β-NBD-TCA uptake from the sinusoidal blood into hepatocytes. Combined deletion of mOatp1a/1b and inhibition of mNtcp by Myrcludex B blocked the uptake of 3β-NBD-TCA from sinusoidal blood into hepatocytes. This led to an increase of 3β-NBD-TCA signal in the systemic circulation including renal capillaries, followed by strong enrichment in a subpopulation of proximal renal tubular epithelial cells (TEC). The enrichment of 3β-NBD-TCA in TEC was strongly reduced by the systemic ASBT inhibitor AS0369. NBD-coupled TCA has similar transport kinetics as [3H]-TCA and can be used as a tool to study hepatorenal BA transport. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Ahmed Ghallab
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Sebastian Kunz
- Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center Seltersberg, Schubertstr. 81, 35392 Giessen, Germany
| | - Celine Drossel
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Veronica Billo
- Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center Seltersberg, Schubertstr. 81, 35392 Giessen, Germany
| | - Adrian Friebel
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany
| | - Mats Georg
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Richard Göttlich
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Zaynab Hobloss
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Reham Hassan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Maiju Myllys
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Abdel-latief Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Noha Abdelmageed
- Department of Pharmacology, Faculty of Veterinary Medicine, Sohag University, 82524 Sohag, Egypt
| | - Paul A. Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, USA
| | | | - Stefan Hoehme
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany
| | - Jan G. Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center Seltersberg, Schubertstr. 81, 35392 Giessen, Germany
| |
Collapse
|
4
|
Berger O, Choi W, Ko CH, Thompson MP, Avram MJ, Scott DJ, Hoare BL, Cridge R, Wheatley M, Bathgate RAD, Batlle D, Gianneschi NC. Long-Circulating Vasoactive 1,18-Octadecanedioic Acid-Terlipressin Conjugate. ACS Pharmacol Transl Sci 2024; 7:1252-1261. [PMID: 38751631 PMCID: PMC11092119 DOI: 10.1021/acsptsci.3c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Hepatorenal syndrome (HRS) is a life-threatening complication of end-stage liver disease first reported over a century ago, but its management still poses an unmet challenge. A therapeutic agent found to stabilize the condition is a short cyclic peptide, vasopressin analogue, terlipressin (TP). While TP is commonly prescribed for HRS patients in most parts of the world, it was only recently approved for use in the United States. TP exhibits short circulation half-lives and adverse side effects associated with the dose required. Herein, we present a 1,18-octadecanedioic acid (ODDA) conjugate of the cyclic peptide (ODDA-TP), which enables noncovalent binding to serum albumin via native fatty acid binding modes. ODDA-TP is demonstrated to outperform TP alone in studies including in vitro cellular receptor activation, stability in plasma, pharmacokinetics, and performance in vivo in rats. Specifically, ODDA-TP had an elimination half-life 20 times that of TP alone while exhibiting a superior safety profile.
Collapse
Affiliation(s)
- Or Berger
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Wonmin Choi
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Caroline H. Ko
- NewCures,
Innovation and Ventures Office, Northwestern
University, Evanston, Illinois 60208, United States
| | - Matthew P. Thompson
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael J. Avram
- Feinberg
Medical School, Northwestern University, Chicago, Illinois 60611, United States
- Department
of Anesthesiology, Northwestern University, Chicago, Illinois 60611, United States
| | - Daniel J. Scott
- The
Florey,Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Pharmacology, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | - Mark Wheatley
- Centre
for Sport, Exercise and Life Sciences, Coventry
University, Coventry CV1 5FB, U.K.
- Centre
of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands B15 2TT, U.K.
| | - Ross A. D. Bathgate
- The
Florey,Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Pharmacology, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Batlle
- Feinberg
Medical School, Northwestern University, Chicago, Illinois 60611, United States
- Department
of Medicine Division of Nephrology and Hypertension, Chicago, Illinois 60611, United States
| | - Nathan C. Gianneschi
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Northwestern
University, Chicago, Illinois 60611, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Simpson-Querrey Institute, Northwestern
University, Chicago, Illinois 60611, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Ghallab A, González D, Strängberg E, Hofmann U, Myllys M, Hassan R, Hobloss Z, Brackhagen L, Begher-Tibbe B, Duda JC, Drenda C, Kappenberg F, Reinders J, Friebel A, Vucur M, Turajski M, Seddek AL, Abbas T, Abdelmageed N, Morad SAF, Morad W, Hamdy A, Albrecht W, Kittana N, Assali M, Vartak N, van Thriel C, Sous A, Nell P, Villar-Fernandez M, Cadenas C, Genc E, Marchan R, Luedde T, Åkerblad P, Mattsson J, Marschall HU, Hoehme S, Stirnimann G, Schwab M, Boor P, Amann K, Schmitz J, Bräsen JH, Rahnenführer J, Edlund K, Karpen SJ, Simbrunner B, Reiberger T, Mandorfer M, Trauner M, Dawson PA, Lindström E, Hengstler JG. Inhibition of the renal apical sodium dependent bile acid transporter prevents cholemic nephropathy in mice with obstructive cholestasis. J Hepatol 2024; 80:268-281. [PMID: 37939855 PMCID: PMC10849134 DOI: 10.1016/j.jhep.2023.10.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND & AIMS Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.
Collapse
Affiliation(s)
- Ahmed Ghallab
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt.
| | - Daniela González
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | | | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Auerbachstr. 112, 70376 Stuttgart, Germany
| | - Maiju Myllys
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Reham Hassan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Zaynab Hobloss
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Lisa Brackhagen
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Brigitte Begher-Tibbe
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Julia C Duda
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany
| | - Carolin Drenda
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany
| | | | - Joerg Reinders
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Adrian Friebel
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, 40225 Dusseldorf, Germany
| | - Monika Turajski
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Abdel-Latief Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Tahany Abbas
- Histology Department, Faculty of Medicine, South Valley University, 83523 Qena, Egypt
| | - Noha Abdelmageed
- Department of Pharmacology, Faculty of Veterinary Medicine, Sohag University, 82524 Sohag, Egypt
| | - Samy A F Morad
- Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Walaa Morad
- Histology Department, Faculty of Medicine, South Valley University, 83523 Qena, Egypt
| | - Amira Hamdy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Wiebke Albrecht
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Naim Kittana
- Department of Biomedical Sciences, An-Najah National University, P.O. Box 7 Nablus, Palestine, Israel
| | - Mohyeddin Assali
- Department of Pharmacy, An-Najah National University, P.O. Box 7 Nablus, Palestine, Israel
| | - Nachiket Vartak
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Christoph van Thriel
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Ansam Sous
- Department of Pharmacy, An-Najah National University, P.O. Box 7 Nablus, Palestine, Israel
| | - Patrick Nell
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Maria Villar-Fernandez
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Cristina Cadenas
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Erhan Genc
- MRI Unit, Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, 44139 Dortmund, Germany
| | - Rosemarie Marchan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, 40225 Dusseldorf, Germany
| | | | | | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Stefan Hoehme
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany
| | - Guido Stirnimann
- University Clinic for Visceral Surgery and Medicine, Inselspital University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Auerbachstr. 112, 70376 Stuttgart, Germany; Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University Tuebingen, 72076 Tuebingen, Germany; Cluster of Excellence iFIT (EXC2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, 69120 Tuebingen, Germany
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Jessica Schmitz
- Institute of Pathology, Nephropathology Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Jan H Bräsen
- Institute of Pathology, Nephropathology Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany
| | - Karolina Edlund
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Saul J Karpen
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; Hans Popper Laboratory of Molecular Hepatology, Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States
| | | | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany.
| |
Collapse
|
6
|
Weinberg E, Rahematpura S, Gonzalez SA, Izzy MJ, Simonetto DA, Frederick RT, Rubin RA, Ikahihifo-Bender J, Harte M, Kim-Lee G, Witkiewicz S, Tobin W, Jamil K, Fricker Z, Reddy KR. INFUSE: Rationale and design of a multi-center, open label, collaborative study to treat HRS-AKI with continuous terlipressin infusion. Contemp Clin Trials Commun 2023; 36:101211. [PMID: 37953795 PMCID: PMC10632660 DOI: 10.1016/j.conctc.2023.101211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 10/01/2023] [Indexed: 11/14/2023] Open
Abstract
Background Hepatorenal syndrome-acute kidney injury (HRS-AKI) carries significant morbidity and mortality among those with end-stage liver disease. Bolus terlipressin for treatment of HRS-AKI received FDA approval in September 2022. US implementation of terlipressin, however, is hindered by the paucity of local data on the optimal patient population and administration mode, as well as the effect on transplant priority. The INFUSE study is designed to evaluate the use of continuous terlipressin infusion among transplant candidates with advanced liver disease and HRS-AKI. Methods Fifty prospective patients with HRS-AKI will receive a single bolus of terlipressin 0.5 mg followed by continuous infusions of terlipressin from 2 to 8 mg/day for up to 14 days. The cohort will be enriched with those listed, in evaluation, or eligible for liver transplantation, while those with ACLF grade 3, MELD ≥35, and serum creatinine >5.0 mg/dL will be excluded. Fifty patients who received midodrine plus octreotide or norepinephrine for HRS-AKI will serve as a retrospective comparator cohort. Conclusion The INFUSE study aims to assess the safety and efficacy of continuous terlipressin infusion among largely transplant-eligible patients with HRS-AKI, and to provide US-based data on transplant outcomes. This novel study design simultaneously mitigates terlipressin adverse events while providing renal benefits to patients, thus addressing the unmet medical need of those with HRS-AKI who have limited treatment options and are awaiting liver transplantation in the US.
Collapse
Affiliation(s)
- Ethan Weinberg
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Suditi Rahematpura
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stevan A. Gonzalez
- Division of Hepatology, Simmons Transplant Institute, Baylor Scott and White All Saints Medical Center, Fort Worth, TX, USA
| | - Manhal J. Izzy
- Department of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - R. Todd Frederick
- Department of Hepatology and Liver Transplantation, California Pacific Medical Center, San Francisco, CA, USA
| | - Raymond A. Rubin
- Department of Transplantation, Piedmont Transplant Institute, Atlanta, GA, USA
| | - Jade Ikahihifo-Bender
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maggie Harte
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Grace Kim-Lee
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Khurram Jamil
- Mallinckrodt Ltd, Scientific Affairs, Hampton, NJ, USA
| | - Zachary Fricker
- Division of Gastroenterology, Hepatology, and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - K. Rajender Reddy
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
7
|
Roy P, Minhaz N, Shah-Riar P, Simona SY, Tasha T, Binte Hasan T, Abbasi FK, Alam F, Nila SA, Akter J, Akter S, Biswas S, Sultana N. A Comprehensive Systematic Review of the Latest Management Strategies for Hepatorenal Syndrome: A Complicated Syndrome to Tackle. Cureus 2023; 15:e43073. [PMID: 37680416 PMCID: PMC10481992 DOI: 10.7759/cureus.43073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2023] [Indexed: 09/09/2023] Open
Abstract
Hepatorenal syndrome (HRS), defined by the extreme manifestation of renal impairment in patients with cirrhosis, is characterized by reduced renal blood flow and glomerular filtration rate. It is diagnosed with reduced kidney function confirming the absence of intrinsic kidney disease, such as hematuria or proteinuria. HRS is potentially reversible with liver transplantation or vasoconstrictor drugs. The condition carries a poor prognosis with high mortality rates, particularly in patients with advanced cirrhosis. The latest management for HRS involves a combination of pharmacological and non-pharmacological interventions, aiming to improve renal function and reduce the risk of mortality. Pharmacological treatments include vasoconstrictors, such as terlipressin and midodrine, and albumin infusion, which have been shown to improve renal function and reduce mortality in HRS patients. Non-pharmacological interventions, including invasive procedures such as transjugular intrahepatic portosystemic shunt (TIPS), plasma exchange, liver transplantation, and renal replacement therapy, may also be considered. Though TIPS has been shown to be effective in improving renal function in HRS patients, liver transplantation remains at the top of the consideration for the treatment of end-stage liver disease and HRS. Recent studies have placed importance on early recognition and prompt intervention in HRS patients, as delaying treatment can result in poorer outcomes. Although there are numerous reviews that summarize various aspects of HRS, the recent advancements in the management and pathophysiology of HRS are still insufficient. Therefore, in this review, we summarized a brief pathophysiology and highlighted recent advancements in the management of HRS with a quick review of the latest articles.
Collapse
Affiliation(s)
- Pooja Roy
- Internal Medicine, Harlem Hospital Center, New York, USA
| | - Naofel Minhaz
- Internal Medicine, Dhaka Medical College, Dhaka, BGD
| | | | | | - Tasniem Tasha
- Internal Medicine, Rajshahi Medical College, Rajshahi, BGD
| | | | | | - Farhana Alam
- Internal Medicine, Chittagong Medical College, Chittagong, BGD
| | - Shamima A Nila
- Internal Medicine, Cumilla Medical College and Hospital, Cumilla, BGD
| | - Janifa Akter
- Internal Medicine, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
- Internal Medicine, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, BGD
| | - Sharmin Akter
- Internal Medicine, Shaheed Ziaur Rahman Medical College, Bogura, BGD
| | - Shammo Biswas
- Internal Medicine, Sir Salimullah Medical College Mitford Hospital, Dhaka, BGD
| | - Nigar Sultana
- Internal Medicine, Sir Salimullah Medical College Mitford Hospital, Dhaka, BGD
| |
Collapse
|
8
|
Mandorfer M, Simbrunner B. Ascites and complications: getting to the root of the trouble. Hepatobiliary Surg Nutr 2023; 12:124-127. [PMID: 36860249 PMCID: PMC9944530 DOI: 10.21037/hbsn-22-625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023]
|
9
|
Palladini G, Cagna M, Di Pasqua LG, Adorini L, Croce AC, Perlini S, Ferrigno A, Berardo C, Vairetti M. Obeticholic Acid Reduces Kidney Matrix Metalloproteinase Activation following Partial Hepatic Ischemia/Reperfusion Injury in Rats. Pharmaceuticals (Basel) 2022; 15:ph15050524. [PMID: 35631351 PMCID: PMC9145209 DOI: 10.3390/ph15050524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
We have previously demonstrated that the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) protects the liver via downregulation of hepatic matrix metalloproteinases (MMPs) after ischemia/reperfusion (I/R), which can lead to multiorgan dysfunction. The present study investigated the capacity of OCA to modulate MMPs in distant organs such as the kidney. Male Wistar rats were dosed orally with 10 mg/kg/day of OCA (5 days) and were subjected to 60-min partial hepatic ischemia. After 120-min reperfusion, kidney biopsies (cortex and medulla) and blood samples were collected. Serum creatinine, kidney MMP-2, and MMP-9-dimer, tissue inhibitors of MMPs (TIMP-1, TIMP-2), RECK, TNF-alpha, and IL-6 were monitored. MMP-9-dimer activity in the kidney cortex and medulla increased after hepatic I/R and a reduction was detected in OCA-treated I/R rats. Although not significantly, MMP-2 activity decreased in the cortex of OCA-treated I/R rats. TIMPs and RECK levels showed no significant differences among all groups considered. Serum creatinine increased after I/R and a reduction was detected in OCA-treated I/R rats. The same trend occurred for tissue TNF-alpha and IL-6. Although the underlying mechanisms need further investigation, this is the first study showing, in the kidney, beneficial effects of OCA by reducing TNF-alpha-mediated expression of MMPs after liver I/R.
Collapse
Affiliation(s)
- Giuseppina Palladini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
- Internal Medicine Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marta Cagna
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
| | - Laura Giuseppina Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
| | | | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), 27100 Pavia, Italy;
| | - Stefano Perlini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
- Emergency Department Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
| | - Clarissa Berardo
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
- Correspondence: (C.B.); (M.V.); Tel.: +39-0382-986877 (C.B.); +39-0382-986398 (M.V.)
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
- Correspondence: (C.B.); (M.V.); Tel.: +39-0382-986877 (C.B.); +39-0382-986398 (M.V.)
| |
Collapse
|