1
|
Zong G, Fu J, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. Use of elicitors to enhance or activate the antibiotic production in streptomyces. Crit Rev Biotechnol 2021; 42:1260-1283. [PMID: 34706600 DOI: 10.1080/07388551.2021.1987856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Streptomyces is the largest and most significant genus of Actinobacteria, comprising 961 species. These Gram-positive bacteria produce many versatile and important bioactive compounds; of these, antibiotics, specifically the enhancement or activation of their production, have received extensive research attention. Recently, various biotic and abiotic elicitors have been reported to modify the antibiotic metabolism of Streptomyces, which promotes the production of new antibiotics and bioactive metabolites for improvement in the yields of endogenous products. However, some elicitors that obviously contribute to secondary metabolite production have not yet received sufficient attention. In this study, we have reviewed the functions and mechanisms of chemicals, novel microbial metabolic elicitors, microbial interactions, enzymes, enzyme inhibitors, environmental factors, and novel combination methods regarding antibiotic production in Streptomyces. This review has aimed to identify potentially valuable elicitors for stimulating the production of latent antibiotics or enhancing the synthesis of subsistent antibiotics in Streptomyces. Future applications and challenges in the discovery of new antibiotics and enhancement of existing antibiotic production using elicitors are discussed.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Dunlap CA, Bowman MJ, Zeigler DR. Promotion of Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris to species status. Antonie van Leeuwenhoek 2019; 113:1-12. [PMID: 31721032 DOI: 10.1007/s10482-019-01354-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022]
Abstract
Bacillus subtilis currently encompasses four subspecies, Bacillus subtilis subsp. subtilis, Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris. Several studies based on genomic comparisons have suggested these subspecies should be promoted to species status. Previously, one of the main reasons for leaving them as subspecies was the lack of distinguishing phenotypes. In this study, we used comparative genomics to determine the genes unique to each subspecies and used these to lead us to the unique phenotypes. The results show that one difference among the subspecies is they produce different bioactive secondary metabolites. B. subtilis subsp. spizizenii is shown conserve the genes to produce mycosubtilin, bacillaene and 3,3'-neotrehalosadiamine. B. subtilis subsp. inaquosorum is shown conserve the genes to produce bacillomycin F, fengycin and an unknown PKS/NRPS cluster. B. subtilis subsp. stercoris is shown conserve the genes to produce fengycin and an unknown PKS/NRPS cluster. While B. subtilis subsp. subtilis is shown to conserve the genes to produce 3,3'-neotrehalosadiamine. In addition, we update the chemotaxonomy and phenotyping to support their promotion to species status.
Collapse
Affiliation(s)
- Christopher A Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL, USA.
| | - Michael J Bowman
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL, USA
| | - Daniel R Zeigler
- Bacillus Genetic Stock Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Richts B, Rosenberg J, Commichau FM. A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium Bacillus subtilis. Front Mol Biosci 2019; 6:32. [PMID: 31134210 PMCID: PMC6522883 DOI: 10.3389/fmolb.2019.00032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The B6 vitamer pyridoxal 5′-phosphate (PLP) is a co-factor for proteins and enzymes that are involved in diverse cellular processes. Therefore, PLP is essential for organisms from all kingdoms of life. Here we provide an overview about the PLP-dependent proteins from the Gram-positive soil bacterium Bacillus subtilis. Since B. subtilis serves as a model system in basic research and as a production host in industry, knowledge about the PLP-dependent proteins could facilitate engineering the bacteria for biotechnological applications. The survey revealed that the majority of the PLP-dependent proteins are involved in metabolic pathways like amino acid biosynthesis and degradation, biosynthesis of antibacterial compounds, utilization of nucleotides as well as in iron and carbon metabolism. Many PLP-dependent proteins participate in de novo synthesis of the co-factors biotin, folate, heme, and NAD+ as well as in cell wall metabolism, tRNA modification, regulation of gene expression, sporulation, and biofilm formation. A surprisingly large group of PLP-dependent proteins (29%) belong to the group of poorly characterized proteins. This review underpins the need to characterize the PLP-dependent proteins of unknown function to fully understand the “PLP-ome” of B. subtilis.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
4
|
Rifampin Resistance rpoB Alleles or Multicopy Thioredoxin/Thioredoxin Reductase Suppresses the Lethality of Disruption of the Global Stress Regulator spx in Staphylococcus aureus. J Bacteriol 2016; 198:2719-31. [PMID: 27432833 DOI: 10.1128/jb.00261-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/14/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Staphylococcus aureus is capable of causing a remarkable spectrum of disease, ranging from mild skin eruptions to life-threatening infections. The survival and pathogenic potential of S. aureus depend partly on its ability to sense and respond to changes in its environment. Spx is a thiol/oxidative stress sensor that interacts with the C-terminal domain of the RNA polymerase RpoA subunit, leading to changes in gene expression that help sustain viability under various conditions. Using genetic and deep-sequencing methods, we show that spx is essential in S. aureus and that a previously reported Δspx strain harbored suppressor mutations that allowed it to grow without spx One of these mutations is a single missense mutation in rpoB (a P-to-L change at position 519 encoded by rpoB [rpoB-P519L]) that conferred high-level resistance to rifampin. This mutation alone was found to be sufficient to bypass the requirement for spx The generation of rifampin resistance libraries led to the discovery of an additional rpoB mutation, R484H, which supported strains with the spx disruption. Other rifampin resistance mutations either failed to support the Δspx mutant or were recovered at unexpectedly low frequencies in genetic transduction experiments. The amino acid residues encoded by rpoB-P519L and -R484H map in close spatial proximity and comprise a highly conserved region of RpoB. We also discovered that multicopy expression of either trxA (encoding thioredoxin) or trxB (encoding thioredoxin reductase) supports strains with the deletion of spx Our results reveal intriguing properties, especially of RNA polymerase, that compensate for the loss of an essential gene that is a key mediator of diverse processes in S. aureus, including redox and thiol homeostasis, antibiotic resistance, growth, and metabolism. IMPORTANCE The survival and pathogenicity of S. aureus depend on complex genetic programs. An objective for combating this insidious organism entails dissecting genetic regulatory circuits and discovering promising new targets for therapeutic intervention. In this study, we discovered that Spx, an RNA polymerase-interacting stress regulator implicated in many stress responses in S. aureus, including responses to oxidative and cell wall antibiotics, is essential. We describe two mechanisms that suppress the lethality of spx disruption. One mechanism highlights how only certain rifampin resistance-encoding alleles of RpoB confer new properties on RNA polymerase, with important mechanistic implications. We describe additional stress conditions where the loss of spx is deleterious, thereby highlighting Spx as a multifaceted regulator and attractive drug discovery target.
Collapse
|
5
|
De Smet L, De Koker D, Hawley AK, Foster LJ, De Vos P, de Graaf DC. Effect of bodily fluids from honey bee (Apis mellifera) larvae on growth and genome-wide transcriptional response of the causal agent of American Foulbrood disease (Paenibacillus larvae). PLoS One 2014; 9:e89175. [PMID: 24586572 PMCID: PMC3930689 DOI: 10.1371/journal.pone.0089175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/16/2014] [Indexed: 11/18/2022] Open
Abstract
Paenibacillus larvae, the causal agent of American Foulbrood disease (AFB), affects honey bee health worldwide. The present study investigates the effect of bodily fluids from honey bee larvae on growth velocity and transcription for this Gram-positive, endospore-forming bacterium. It was observed that larval fluids accelerate the growth and lead to higher bacterial densities during stationary phase. The genome-wide transcriptional response of in vitro cultures of P. larvae to larval fluids was studied by microarray technology. Early responses of P. larvae to larval fluids are characterized by a general down-regulation of oligopeptide and sugar transporter genes, as well as by amino acid and carbohydrate metabolic genes, among others. Late responses are dominated by general down-regulation of sporulation genes and up-regulation of phage-related genes. A theoretical mechanism of carbon catabolite repression is discussed.
Collapse
Affiliation(s)
- Lina De Smet
- Ghent University, Laboratory of Zoophysiology, Department of Physiology, Ghent, Belgium
| | - Dieter De Koker
- Ghent University, Laboratory of Zoophysiology, Department of Physiology, Ghent, Belgium
| | - Alyse K. Hawley
- University of British Columbia, Department of Microbiology & Immunology, Vancouver, Canada
| | - Leonard J. Foster
- University of British Columbia, Department of Biochemistry & Molecular Biology, Vancouver, Canada
| | - Paul De Vos
- Ghent University, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent, Belgium
| | - Dirk C. de Graaf
- Ghent University, Laboratory of Zoophysiology, Department of Physiology, Ghent, Belgium
- * E-mail:
| |
Collapse
|
6
|
Kubo Y, Inaoka T, Hachiya T, Miyake M, Hase S, Nakagawa R, Hasegawa H, Funane K, Sakakibara Y, Kimura K. Development of a rifampicin-resistant Bacillus subtilis strain for natto-fermentation showing enhanced exoenzyme production. J Biosci Bioeng 2013; 115:654-7. [DOI: 10.1016/j.jbiosc.2012.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/07/2012] [Accepted: 12/17/2012] [Indexed: 11/26/2022]
|
7
|
Kubo Y, Saito K, Hohlweck D, Funane K, Nakagawa R, Kimura K. Black Soybean Fermentation using a rpoB Mutant Strain of Bacillus subtilis (natto). J JPN SOC FOOD SCI 2013. [DOI: 10.3136/nskkk.60.577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|