1
|
Different Effects of Salt Bridges near the Active Site of Cold-Adapted Proteus mirabilis Lipase on Thermal and Organic Solvent Stabilities. Catalysts 2022. [DOI: 10.3390/catal12070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Organic solvent-tolerant (OST) enzymes have been discovered in psychrophiles. Cold-adapted OST enzymes exhibit increased conformational flexibility in polar organic solvents resulting from their intrinsically flexible structures. Proteus mirabilis lipase (PML), a cold-adapted OST lipase, was used to assess the contribution of salt bridges near the active site involving two arginine residues (R237 and R241) on the helix η1 and an aspartate residue (D248) on the connecting loop to the thermal and organic solvent stabilities of PML. Alanine substitutions for the ion pairs (R237A, R241A, D248A, and R237A/D248A) increased the conformational flexibility of PML mutants compared to that of the wild-type PML in an aqueous buffer. The PML mutants became more susceptible to denaturation after increasing the dimethyl sulfoxide or methanol concentration than after a temperature increase. Methanol was more detrimental to the structural stability of PML compared to dimethyl sulfoxide. These results suggest that direct interactions of dimethyl sulfoxide and methanol with the residues near the active site can have a destructive effect on the structure of PML compared with the global effect of heat on the protein structure. This study provides insight into the conformational changes within an OST enzyme with different effects on its thermal and organic solvent stabilities.
Collapse
|
2
|
Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biol 2018. [DOI: 10.1007/s00300-018-2300-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Latip W, Raja Abd Rahman RNZ, Leow ATC, Mohd Shariff F, Kamarudin NHA, Mohamad Ali MS. The Effect of N-Terminal Domain Removal towards the Biochemical and Structural Features of a Thermotolerant Lipase from an Antarctic Pseudomonas sp. Strain AMS3. Int J Mol Sci 2018; 19:ijms19020560. [PMID: 29438291 PMCID: PMC5855782 DOI: 10.3390/ijms19020560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022] Open
Abstract
Lipase plays an important role in industrial and biotechnological applications. Lipases have been subject to modification at the N and C terminals, allowing better understanding of lipase stability and the discovery of novel properties. A thermotolerant lipase has been isolated from Antarctic Pseudomonas sp. The purified Antarctic AMS3 lipase (native) was found to be stable across a broad range of temperatures and pH levels. The lipase has a partial Glutathione-S-transferase type C (GST-C) domain at the N-terminal not found in other lipases. To understand the influence of N-terminal GST-C domain on the biochemical and structural features of the native lipase, the deletion of the GST-C domain was carried out. The truncated protein was successfully expressed in E. coli BL21(DE3). The molecular weight of truncated AMS3 lipase was approximately ~45 kDa. The number of truncated AMS3 lipase purification folds was higher than native lipase. Various mono and divalent metal ions increased the activity of the AMS3 lipase. The truncated AMS3 lipase demonstrated a similarly broad temperature range, with the pH profile exhibiting higher activity under alkaline conditions. The purified lipase showed a substrate preference for a long carbon chain substrate. In addition, the enzyme activity in organic solvents was enhanced, especially for toluene, Dimethylsulfoxide (DMSO), chloroform and xylene. Molecular simulation revealed that the truncated lipase had increased structural compactness and rigidity as compared to native lipase. Removal of the N terminal GST-C generally improved the lipase biochemical characteristics. This enzyme may be utilized for industrial purposes.
Collapse
Affiliation(s)
- Wahhida Latip
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Department of Microbiology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Department of Cell and Molecular Biology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Department of Microbiology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Department of Biochemistry, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
4
|
Song C, Liu Z, Xie Q, Wang H, Huang Y, Ruan Y, Chen D. Characterization of a novel thermo-stable lipase from endophyte Pseudomonas putida in Pistacia chinensis Bunge. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817050143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
|
6
|
Liu Y, Liu H, Huang L, Gui S, Zheng D, Jia L, Fu Y, Lu F. Improvement in thermostability of an alkaline lipase I from Penicillium cyclopium by directed evolution. RSC Adv 2017. [DOI: 10.1039/c7ra06307e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel alkaline-stable lipase I from Penicillium cyclopium with improved thermostability was prepared by molecular modification.
Collapse
Affiliation(s)
- Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- National Engineering Laboratory for Industrial Enzymes
| | - Hao Liu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- The College of Biotechnology
| | - Lin Huang
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- Tianjin Key Laboratory of Industrial Microbiology
| | - Shuang Gui
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- The College of Biotechnology
| | - Dong Zheng
- Tianjin Key Laboratory of Industrial Microbiology
- Tianjin 300457
- P. R. China
- The College of Biotechnology
- Tianjin University of Science and Technology
| | - Leibo Jia
- Tianjin Key Laboratory of Industrial Microbiology
- Tianjin 300457
- P. R. China
- The College of Biotechnology
- Tianjin University of Science and Technology
| | - Yu Fu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- The College of Biotechnology
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- National Engineering Laboratory for Industrial Enzymes
| |
Collapse
|
7
|
Hong DK, Jang SH, Lee C. Gene cloning and characterization of a psychrophilic phthalate esterase with organic solvent tolerance from an Arctic bacterium Sphingomonas glacialis PAMC 26605. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Dachuri V, Boyineni J, Choi S, Chung HS, Jang SH, Lee C. Organic solvent-tolerant, cold-adapted lipases PML and LipS exhibit increased conformational flexibility in polar organic solvents. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Kumar A, Dhar K, Kanwar SS, Arora PK. Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online 2016; 18:2. [PMID: 26766927 PMCID: PMC4711063 DOI: 10.1186/s12575-016-0033-2] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/03/2016] [Indexed: 12/17/2022] Open
Abstract
Lipases are industrial biocatalysts, which are involved in several novel reactions, occurring in aqueous medium as well as non-aqueous medium. Furthermore, they are well-known for their remarkable ability to carry out a wide variety of chemo-, regio- and enantio-selective transformations. Lipases have been gained attention worldwide by organic chemists due to their general ease of handling, broad substrate tolerance, high stability towards temperatures and solvents and convenient commercial availability. Most of the synthetic reactions on industrial scale are carried out in organic solvents because of the easy solubility of non-polar compounds. The effect of organic system on their stability and activity may determine the biocatalysis pace. Because of worldwide use of lipases, there is a need to understand the mechanisms behind the lipase-catalyzed reactions in organic solvents. The unique interfacial activation of lipases has always fascinated enzymologists and recently, biophysicists and crystallographers have made progress in understanding the structure-function relationships of these enzymes. The present review describes the advantages of lipase-catalyzed reactions in organic solvents and various effects of organic solvents on their activity.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171 005 India
| | - Kartik Dhar
- Departmentof Microbiology, University of Chittagong, Chittagong, Bangladesh
| | | | - Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| |
Collapse
|
10
|
Ji X, Li S, Wang B, Zhang Q, Lin L, Dong Z, Wei Y. Expression, purification and characterization of a functional, recombinant, cold-active lipase (LipA) from psychrotrophic Yersinia enterocolitica. Protein Expr Purif 2015; 115:125-31. [PMID: 26256062 DOI: 10.1016/j.pep.2015.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/15/2015] [Accepted: 08/04/2015] [Indexed: 11/30/2022]
Abstract
A novel cold-active lipase gene encoding 294 amino acid residues was obtained from the Yersinia enterocolitica strain KM1. Sequence alignment and phylogenetic analysis revealed that this novel lipase is a new member of the bacterial lipase family I.1. The lipase shares the conserved GXSXG motif and catalytic triad Ser85-Asp239-His261. The recombinant protein LipA was solubly and heterogeneously expressed in Escherichia coli, purified by Ni-affinity chromatography, and then characterized. LipA was active over a broad range spanning 15-60°C with an optimum activity at 25°C and across a wide pH range from 5.0 to 11.0 with an optimum activity at pH 7.5. The molecular weight was estimated to be 34.2 KDa. The lipase could be activated by Mg(2+) and a low concentration (10%) of ethanol, dimethyl sulfoxide, methanol and acetonitrile, whereas it was strongly inhibited by Zn(2+), Cu(2+) and Mn(2+). This cold-active lipase may be a good candidate for detergents and biocatalysts at low temperature.
Collapse
Affiliation(s)
- Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Shan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, Gansu, PR China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Lianbing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Zhiyang Dong
- Institute of Microbiology Chinese Academy of Sciences, Beijing, PR China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China.
| |
Collapse
|
11
|
Jang E, Ryu BH, Kim TD. Identification, characterization, and immobilization of an organic solvent-stable alkaline hydrolase (PA27) from Pseudomonas aeruginosa MH38. Molecules 2014; 19:14396-405. [PMID: 25221865 PMCID: PMC6271597 DOI: 10.3390/molecules190914396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/16/2022] Open
Abstract
An organic solvent-stable alkaline hydrolase (PA27) from Pseudomonas aeruginosa MH38 was expressed, characterized, and immobilized for biotechnological applications. Recombinant PA27 was expressed in Escherichia coli as a 27 kDa soluble protein and was purified by standard procedures. PA27 was found to be stable at pH 8–11 and below 50 °C. It maintained more than 80% of its activity under alkaline conditions (pH 8.0–11.0). Furthermore, PA27 exhibited remarkable stability in benzene and n-hexane at concentrations of 30% and 50%. Based on these properties, immobilization of PA27 for biotechnological applications was explored. Scanning electron microscopy revealed a very smooth spherical structure with numerous large pores. Interestingly, immobilized PA27 displayed improved thermal/chemical stabilities and high reusability. Specifically, immobilized PA27 has improved thermal stability, maintaining over 90% of initial activity after 1 h of incubation at 80 °C, whereas free PA27 had only 35% residual activity. Furthermore, immobilized PA27 showed higher residual activity than the free enzyme biocatalysts against detergents, urea, and phenol. Immobilized PA27 could be recycled 20 times with retention of ~60% of its initial activity. Furthermore, macroscopic hydrogel formation of PA27 was also investigated. These characteristics make PA27 a great candidate for an industrial biocatalyst with potential applications.
Collapse
Affiliation(s)
- Eunjin Jang
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-749, Korea.
| | - Bum Han Ryu
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-749, Korea.
| | - Thomas Doohun Kim
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|
12
|
Biochemical properties of a new cold-active mono- and diacylglycerol lipase from marine member Janibacter sp. strain HTCC2649. Int J Mol Sci 2014; 15:10554-66. [PMID: 24927145 PMCID: PMC4100168 DOI: 10.3390/ijms150610554] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/15/2014] [Accepted: 05/22/2014] [Indexed: 11/26/2022] Open
Abstract
Mono- and di-acylglycerol lipase has been applied to industrial usage in oil modification for its special substrate selectivity. Until now, the reported mono- and di-acylglycerol lipases from microorganism are limited, and there is no report on the mono- and di-acylglycerol lipase from bacteria. A predicted lipase (named MAJ1) from marine Janibacter sp. strain HTCC2649 was purified and biochemical characterized. MAJ1 was clustered in the family I.7 of esterase/lipase. The optimum activity of the purified MAJ1 occurred at pH 7.0 and 30 °C. The enzyme retained 50% of the optimum activity at 5 °C, indicating that MAJ1 is a cold-active lipase. The enzyme activity was stable in the presence of various metal ions, and inhibited in EDTA. MAJ1 was resistant to detergents. MAJ1 preferentially hydrolyzed mono- and di-acylglycerols, but did not show activity to triacylglycerols of camellia oil substrates. Further, MAJ1 is low homologous to that of the reported fungal diacylglycerol lipases, including Malassezia globosa lipase 1 (SMG1), Penicillium camembertii lipase U-150 (PCL), and Aspergillus oryzae lipase (AOL). Thus, we identified a novel cold-active bacterial lipase with a sn-1/3 preference towards mono- and di-acylglycerides for the first time. Moreover, it has the potential, in oil modification, for special substrate selectivity.
Collapse
|