1
|
Kudo K, Kobayashi T, Kasai K, Nozaka H, Nakamura T. Chondroitin sulfate is not digested at all in the mouse small intestine but may suppress interleukin 6 expression induced by tumor necrosis factor-α. Biochem Biophys Res Commun 2023; 642:185-191. [PMID: 36586186 DOI: 10.1016/j.bbrc.2022.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Salmon nasal cartilage proteoglycan (PG) was orally administered to mice. The PG digest was recovered from the small intestine, and its sugar chain size and unsaturated disaccharide content were examined. The elution position of the PG digest following Sepharose CL-4B chromatography was consistent with that of actinase-digested PG prior to administration. The PG digest was incubated with chondroitinase ABC, which resulted in the elution pattern of the unsaturated disaccharides being identical to that of the degraded product of actinase-digested PG. The core protein of PG was digested in the mouse small intestine, but chondroitin sulfate, which is the sugar chain of PG, was not degraded at all. Then, the effects of chondroitin 4- and 6-sulfates on human colon cancer cells were examined. These chondroitin sulfates were found to suppress the expression of interleukin-6 induced by TNF-α. Overall, the chondroitin sulfate chain may act on the intestinal epithelium and suppress inflammation of the intestinal tract.
Collapse
Affiliation(s)
- Kai Kudo
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Takashi Kobayashi
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kosuke Kasai
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Hiroyuki Nozaka
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Toshiya Nakamura
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan.
| |
Collapse
|
2
|
Managing Skin Ageing as a Modifiable Disorder—The Clinical Application of Nourella® Dual Approach Comprising a Nano-Encapsulated Retinoid, Retilex-A® and a Skin Proteoglycan Replacement Therapy, Vercilex®. COSMETICS 2022. [DOI: 10.3390/cosmetics9020031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skin ageing is a progressive, but modifiable, multi-factorial disorder that involves all the skin’s tissues. Due to its wide range of physiological and psychosocial complications, skin ageing requires rigorous clinical attention. In this review, we aim to encourage clinicians to consider skin ageing as a disorder and suggest a novel, dual approach to its clinical treatment. Topical retinoids and per-oral proteoglycans are promising, non-invasive, therapeutic modalities. To overcome the low bioavailability of conventional free retinoids, Nourella® cream with Retilex-A® (Pharma Medico, Aarhus, Denmark) was developed using a proprietary nano-encapsulation technology. The nano-encapsulation is a sophisticated ‘permeation/penetration enhancer’ that optimises topical drug delivery by increasing the surface availability and net absorption ratio. Treatment adherence is also improved by minimising skin irritation. Interventional evidence suggests the greater efficacy of Retilex-A® in improving skin thickness and elasticity compared with conventional free forms. It is also reported that the rejuvenating efficacy of Retilex-A® and tretinoin are comparable. Another skin anti-ageing approach is proteoglycan replacement therapy (PRT) with Vercilex®. Vercilex® in Nourella® tablet form has the potential to ameliorate proteoglycan dysmetabolism in aged skin by activating skin cells and improving collagen/elastin turnover. Replicated clinical trials evidenced that PRT can significantly enhance the density, elasticity and thickness of both intrinsically aged and photoaged skin. Evidently, Vercilex® and Retilex-A® share a range of bioactivities that underlie their synergistic activity, as observed in a clinical trial. Dual therapy with Nourella® tablets and cream produced greater effects on skin characteristics than monotherapy with each of the two treatments. In conclusion, Nourella® cream and tablets are safe and effective treatments for skin ageing; however, combining the two in a ‘dual skin rejuvenation system’ significantly improves treatment outcomes.
Collapse
|
3
|
Le TD, Vu HTT, Arunasiri I, Ito K, Makise T, Thi Le H, Nguyen TH, Nguyen LTH, Nguyen AT, Pham BQ, Pham PT, Nguyen HTT, Phan MH, Luong LH, Pham Thi VA. Oral Administration of Salmon Cartilage Proteoglycan Attenuates Osteoarthritis in a Monosodium Iodoacetate-Induced Rat Model. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20982110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Proteoglycan (PG) is a type of glycoprotein which forms an extracellular matrix with collagen and hyaluronic acid to maintain articular cartilage, synovial membrane, and synovial fluid. This study aimed to evaluate the antiosteoarthritis effects of salmon nasal cartilage-derived PG in alleviating knee osteoarthritis in an osteoarthritis rat model. Knee osteoarthritis was induced in rats by intra-articular injection of monosodium iodoacetate (MIA), 3 mg/knee, to the right knee. Animals were then administered either diclofenac (3 mg/kg body weight [b.w]/day) or proteoglycan F (PGF; 40 mg/kg and 120 mg/kg b.w/day) by oral gavage for 6 consecutive weeks. Knee diameters were measured throughout the experimental period; serum interleukin-1β and tumor necrosis factor-alpha (TNF-α) levels, and histological analysis of the ligament were carried out at the end of the experiment. Salmon cartilage PG considerably alleviated the osteoarthritis symptoms in the model and lowered the serum concentrations of interleukin-1β and TNF-α. Diclofenac 3 mg/kg/day and PGF at doses of 40 mg/kg/day and 120 mg/kg/day also improved articular cartilage structure on further histological studies. This study demonstrated the in vivo effect of salmon cartilage PG in attenuating symptoms in an MIA-induced rat model, including reduction of inflammatory markers and histological improvement of cartilage tissue.
Collapse
Affiliation(s)
| | | | | | | | | | - Hang Thi Le
- National Institute of Nutrition, Hanoi, Vietnam
| | | | | | | | - Binh Quoc Pham
- Vietnam University of Traditional Medicine, Hanoi, Vietnam
| | | | | | - Minh Hong Phan
- Department of Pharmacology, Hanoi Medical University, Hanoi, Vietnam
| | - Long Hoang Luong
- Department of Pharmacology, Hanoi Medical University, Hanoi, Vietnam
| | - Van Anh Pham Thi
- Department of Pharmacology, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
4
|
Teng Y, Liang H, Zhang Z, He Y, Pan Y, Yuan S, Wu X, Zhao Q, Yang H, Zhou P. Biodistribution and immunomodulatory activities of a proteoglycan isolated from Ganoderma lucidum. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
5
|
Integral Roles of Specific Proteoglycans in Hair Growth and Hair Loss: Mechanisms behind the Bioactivity of Proteoglycan Replacement Therapy with Nourkrin® with Marilex® in Pattern Hair Loss and Telogen Effluvium. Dermatol Res Pract 2020; 2020:8125081. [PMID: 32425997 PMCID: PMC7222612 DOI: 10.1155/2020/8125081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/01/2020] [Indexed: 11/30/2022] Open
Abstract
Follicular proteoglycans are key players with structural, functional, and regulatory roles in the growth and cycling behaviour of the hair follicles. The expression pattern of specific proteoglycans is strongly correlated with follicular phase transitions, which further affirms their functional involvement. Research shows that bioactive proteoglycans, e.g., versican and decorin, can actively trigger follicular phase shift by their anagen-inducing, anagen-maintaining, and immunoregulatory properties. This emerging insight has led to the recognition of “dysregulated proteoglycan metabolism” as a plausible causal or mediating pathology in hair growth disorders in both men and women. In support of this, declined expression of proteoglycans has been reported in cases of anagen shortening and follicular miniaturisation. To facilitate scientific communication, we propose designating this pathology “follicular hypoglycania (FHG),” which results from an impaired ability of follicular cells to replenish and maintain a minimum relative concentration of key proteoglycans during anagen. Lasting FHG may advance to structural decay, called proteoglycan follicular atrophy (PFA). This process is suggested to be an integral pathogenetic factor in pattern hair loss (PHL) and telogen effluvium (TE). To address FHG and PFA, a proteoglycan replacement therapy (PRT) program using oral administration of a marine-derived extract (Nourkrin® with Marilex®, produced by Pharma Medico Aps, Aarhus, Denmark) containing specific proteoglycans has been developed. In clinical studies, this treatment significantly reduced hair fall, promoted hair growth, and improved quality of life in patients with male- and female-pattern hair loss. Accordingly, PRT (using Nourkrin® with Marilex®) can be recommended as an add-on treatment or monotherapy in patients with PHL and TE.
Collapse
|
6
|
Tomonaga A, Takahashi T, Tanaka YT, Tsuboi M, Ito K, Nagaoka I. Evaluation of the effect of salmon nasal proteoglycan on biomarkers for cartilage metabolism in individuals with knee joint discomfort: A randomized double-blind placebo-controlled clinical study. Exp Ther Med 2017; 14:115-126. [PMID: 28672901 PMCID: PMC5488639 DOI: 10.3892/etm.2017.4454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 02/24/2017] [Indexed: 11/29/2022] Open
Abstract
A randomized double-blind placebo-controlled clinical trial was conducted to evaluate the chondroprotective action of salmon nasal cartilage proteoglycan on joint health. The effect of oral administration of proteoglycan (10 mg/day) on cartilage metabolism was evaluated in individuals with knee joint discomfort but without diagnosis of knee osteoarthritis. The average age of patients was 52.6±1.1 years old. The effect of proteoglycan was evaluated by analyzing markers for type II collagen degradation (C1,2C) and synthesis (PIICP), and the ratio of type II collagen degradation to synthesis. The results indicated that the change in C1,2C levels significantly differed in the proteoglycan group compared with the placebo group following 16 weeks intervention among subjects with high levels of knee pain and physical dysfunction (total score of Japan Knee Osteoarthritis Measure ≥41) and subjects with constant knee pain (both P<0.05). There was a greater increase in PIICP levels in the proteoglycan group than the placebo group following intervention, although this difference was not significant in both sets of patients. Thus, the C1,2C/PIICP ratios decreased in the proteoglycan group, whereas they slightly increased in the placebo group following the intervention. Furthermore, no test supplement-related adverse events were observed during the intervention. Therefore, oral administration of salmon nasal cartilage proteoglycan at a dose of 10 mg/day may exert a chondroprotective action in subjects with knee joint discomfort. This effect was achieved by improving cartilage metabolism (reducing type II collagen degradation and enhancing type II collagen synthesis), without causing apparent adverse effects.
Collapse
Affiliation(s)
| | - Tatsuji Takahashi
- Research and Development Department, Ichimaru Pharcos Co., Ltd., Gifu 501-0475, Japan
| | - Yuka Tsuda Tanaka
- Research and Development Department, Ichimaru Pharcos Co., Ltd., Gifu 501-0475, Japan
| | - Makoto Tsuboi
- Research and Development Department, Ichimaru Pharcos Co., Ltd., Gifu 501-0475, Japan
| | - Kumie Ito
- Nihonbashi Sakura Clinic, Tokyo 103-0025, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
7
|
Tsuchiya Y, Kawamata K, Tomita M, Tsuboi M, Takahashi T, Yonezuka M. Effects of Salmon Nasal Cartilage Proteoglycan on Plasma Glucose Concentration and Active Glucose Transport in the Small Intestine. J Nutr Sci Vitaminol (Tokyo) 2016; 61:502-5. [PMID: 26875493 DOI: 10.3177/jnsv.61.502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recently, proteoglycan was purified from the nasal cartilage of salmon. Although several physiological effects have been reported, the effect of salmon nasal cartilage proteoglycan (salmon PG) on glucose metabolism remains unclear. We studied the effect of salmon PG on rat plasma glucose levels. Oral administration of 1% salmon PG significantly attenuated the increase in portal plasma glucose levels following an oral glucose tolerance test (OGTT). Additionally 1% salmon PG delayed the increase in peripheral glucose concentration induced by the OGTT. Mucosal administration of 1% salmon PG significantly decreased active glucose transport using the everted jejunal sac method. Furthermore, transmural potential difference (ΔPD) measurements using the everted jejunum revealed that 1% salmon PG significantly decreased glucose-dependent and phlorhizin (inhibitor of sodium-glucose co-transporter 1; SGLT1)-sensitive ΔPD. These results suggest that salmon PG decreases glucose absorption via SGLT1 in the jejunum, thereby attenuating the increase in portal and peripheral plasma glucose levels in rats.
Collapse
Affiliation(s)
- Yo Tsuchiya
- Department of Health and Nutrition, Faculty of Home Economics, Tohoku Women's College
| | | | | | | | | | | |
Collapse
|