1
|
StcU-2 Gene Mutation via CRISPR/Cas9 Leads to Misregulation of Spore-Cyst Formation in Ascosphaera apis. Microorganisms 2022; 10:microorganisms10102088. [PMID: 36296364 PMCID: PMC9607276 DOI: 10.3390/microorganisms10102088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Ascosphaera apis is the causative agent of honey bee chalkbrood disease, and spores are the only known source of infections. Interference with sporulation is therefore a promising way to manage A. apis. The versicolorin reductase gene (StcU-2) is a ketoreductase protein related to sporulation and melanin biosynthesis. To study the StcU-2 gene in ascospore production of A. apis, CRISPR/Cas9 was used, and eight hygromycin B antibiotic-resistant transformants incorporating enhanced green fluorescent protein (EGFP) were made and analyzed. PCR amplification, gel electrophoresis, and sequence analysis were used for target gene editing analysis and verification. The CRISPR/Cas9 editing successfully knocked out the StcU-2 gene in A. apis. StcU-2 mutants had shown albino and non-functional spore-cyst development and lost effective sporulation. In conclusion, editing of StcU-2 gene has shown direct relation with sporulation and melanin biosynthesis of A. apis; this effective sporulation reduction would reduce the spread and pathogenicity of A. apis to managed honey bee. To the best of our knowledge, this is the first time CRISPR/Cas9-mediated gene editing has been efficiently performed in A. apis, a fungal honey bee brood pathogen, which offers a comprehensive set of procedural references that contributes to A. apis gene function studies and consequent control of chalkbrood disease.
Collapse
|
2
|
Bosch S, Sanchez-Freire E, del Pozo ML, C̆esnik M, Quesada J, Mate DM, Hernández K, Qi Y, Clapés P, Vasić-Rački Đ, Findrik Blažević Z, Berenguer J, Hidalgo A. Thermostability Engineering of a Class II Pyruvate Aldolase from Escherichia coli by in Vivo Folding Interference. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:5430-5436. [PMID: 34589311 PMCID: PMC8461973 DOI: 10.1021/acssuschemeng.1c00699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Indexed: 06/13/2023]
Abstract
The use of enzymes in industrial processes is often limited by the unavailability of biocatalysts with prolonged stability. Thermostable enzymes allow increased process temperature and thus higher substrate and product solubility, reuse of expensive biocatalysts, resistance against organic solvents, and better "evolvability" of enzymes. In this work, we have used an activity-independent method for the selection of thermostable variants of any protein in Thermus thermophilus through folding interference at high temperature of a thermostable antibiotic reporter protein at the C-terminus of a fusion protein. To generate a monomeric folding reporter, we have increased the thermostability of the moderately thermostable Hph5 variant of the hygromycin B phosphotransferase from Escherichia coli to meet the method requirements. The final Hph17 variant showed 1.5 °C higher melting temperature (T m) and 3-fold longer half-life at 65 °C compared to parental Hph5, with no changes in the steady-state kinetic parameters. Additionally, we demonstrate the validity of the reporter by stabilizing the 2-keto-3-deoxy-l-rhamnonate aldolase from E. coli (YfaU). The most thermostable multiple-mutated variants thus obtained, YfaU99 and YfaU103, showed increases of 2 and 2.9 °C in T m compared to the wild-type enzyme but severely lower retro-aldol activities (150- and 120-fold, respectively). After segregation of the mutations, the most thermostable single variant, Q107R, showed a T m 8.9 °C higher, a 16-fold improvement in half-life at 60 °C and higher operational stability than the wild-type, without substantial modification of the kinetic parameters.
Collapse
Affiliation(s)
- Sandra Bosch
- Department
of Molecular Biology, Center of Molecular Biology “Severo Ochoa”
(UAM-CSIC), Autonomous University of Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Esther Sanchez-Freire
- Department
of Molecular Biology, Center of Molecular Biology “Severo Ochoa”
(UAM-CSIC), Autonomous University of Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - María Luisa del Pozo
- Department
of Molecular Biology, Center of Molecular Biology “Severo Ochoa”
(UAM-CSIC), Autonomous University of Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Morana C̆esnik
- University
of Zagreb, Faculty of Chemical
Engineering and Technology, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Jaime Quesada
- Department
of Molecular Biology, Center of Molecular Biology “Severo Ochoa”
(UAM-CSIC), Autonomous University of Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Diana M. Mate
- Department
of Molecular Biology, Center of Molecular Biology “Severo Ochoa”
(UAM-CSIC), Autonomous University of Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Karel Hernández
- Institute
of Advanced Chemistry of Catalonia, Biotransformation and Bioactive
Molecules Group, Spanish National Research Council (IQAC−CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Yuyin Qi
- Prozomix
Ltd., Station Court, Haltwhistle, NE49 9HN Northumberland, United Kingdom
| | - Pere Clapés
- Institute
of Advanced Chemistry of Catalonia, Biotransformation and Bioactive
Molecules Group, Spanish National Research Council (IQAC−CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Đurđa Vasić-Rački
- University
of Zagreb, Faculty of Chemical
Engineering and Technology, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Zvjezdana Findrik Blažević
- University
of Zagreb, Faculty of Chemical
Engineering and Technology, Savska c. 16, HR-10000 Zagreb, Croatia
| | - José Berenguer
- Department
of Molecular Biology, Center of Molecular Biology “Severo Ochoa”
(UAM-CSIC), Autonomous University of Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Aurelio Hidalgo
- Department
of Molecular Biology, Center of Molecular Biology “Severo Ochoa”
(UAM-CSIC), Autonomous University of Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
3
|
Guo Z, Tang Y, Tang W, Chen Y. Heptose-containing bacterial natural products: structures, bioactivities, and biosyntheses. Nat Prod Rep 2021; 38:1887-1909. [PMID: 33704304 DOI: 10.1039/d0np00075b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2020Glycosylated natural products hold great potential as drugs for the treatment of human and animal diseases. Heptoses, known as seven-carbon-chain-containing sugars, are a group of saccharides that are rarely observed in natural products. Based on the structures of the heptoses, the heptose-containing natural products can be divided into four groups, characterized by heptofuranose, highly-reduced heptopyranose, d-heptopyranose, and l-heptopyranose. Many of them possess remarkable biological properties, including antibacterial, antifungal, antitumor, and pain relief activities, thereby attracting great interest in biosynthesis and chemical synthesis studies to understand their construction mechanisms and structure-activity relationships. In this review, we summarize the structural properties, biological activities, and recent progress in the biosynthesis of bacterial natural products featuring seven-carbon-chain-containing sugars. The biosynthetic origins of the heptose moieties are emphasized.
Collapse
Affiliation(s)
- Zhengyan Guo
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wei Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
4
|
Takenoya M, Shimamura T, Yamanaka R, Adachi Y, Ito S, Sasaki Y, Nakamura A, Yajima S. Structural basis for the substrate recognition of aminoglycoside 7''-phosphotransferase-Ia from Streptomyces hygroscopicus. Acta Crystallogr F Struct Biol Commun 2019; 75:599-607. [PMID: 31475927 PMCID: PMC6718145 DOI: 10.1107/s2053230x19011105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/09/2019] [Indexed: 10/14/2023] Open
Abstract
Hygromycin B (HygB) is one of the aminoglycoside antibiotics, and it is widely used as a reagent in molecular-biology experiments. Two kinases are known to inactivate HygB through phosphorylation: aminoglycoside 7''-phosphotransferase-Ia [APH(7'')-Ia] from Streptomyces hygroscopicus and aminoglycoside 4-phosphotransferase-Ia [APH(4)-Ia] from Escherichia coli. They phosphorylate the hydroxyl groups at positions 7'' and 4 of the HygB molecule, respectively. Previously, the crystal structure of APH(4)-Ia was reported as a ternary complex with HygB and 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). To investigate the differences in the substrate-recognition mechanism between APH(7'')-Ia and APH(4)-Ia, the crystal structure of APH(7'')-Ia complexed with HygB is reported. The overall structure of APH(7'')-Ia is similar to those of other aminoglycoside phosphotransferases, including APH(4)-Ia, and consists of an N-terminal lobe (N-lobe) and a C-terminal lobe (C-lobe). The latter also comprises a core and a helical domain. Accordingly, the APH(7'')-Ia and APH(4)-Ia structures fit globally when the structures are superposed at three catalytically important conserved residues, His, Asp and Asn, in the Brenner motif, which is conserved in aminoglycoside phosphotransferases as well as in eukaryotic protein kinases. On the other hand, the phosphorylated hydroxyl groups of HygB in both structures come close to the Asp residue, and the HygB molecules in each structure lie in opposite directions. These molecules were held by the helical domain in the C-lobe, which exhibited structural differences between the two kinases. Furthermore, based on the crystal structures of APH(7'')-Ia and APH(4)-Ia, some mutated residues in their thermostable mutants reported previously were located at the same positions in the two enzymes.
Collapse
Affiliation(s)
- Mihoko Takenoya
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tatsuro Shimamura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryuji Yamanaka
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuya Adachi
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shinsaku Ito
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yasuyuki Sasaki
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Akira Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
5
|
Chiba Y, Yoshida A, Shimamura S, Kameya M, Tomita T, Nishiyama M, Takai K. Discovery and analysis of a novel type of the serine biosynthetic enzyme phosphoserine phosphatase in Thermus thermophilus. FEBS J 2018; 286:726-736. [PMID: 30430741 DOI: 10.1111/febs.14703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/11/2018] [Accepted: 11/13/2018] [Indexed: 11/26/2022]
Abstract
Studying the diversity of extant metabolisms and enzymes, especially those involved in the biosynthesis of primary metabolites including amino acids, is important to shed light on the evolution of life. Many organisms synthesize serine from phosphoserine via a reaction catalyzed by phosphoserine phosphatase (PSP). Two types of PSP, belonging to distinct protein superfamilies, have been reported. Genomic analyses have revealed that the thermophilic bacterium Thermus thermophilus lacks both homologs while still having the ability to synthesize serine. Here, we purified a protein from T. thermophilus which we biochemically identified as a PSP. A knockout mutant of the responsible gene (TT_C1695) was constructed, which showed serine auxotrophy. These results indicated the involvement of this gene in serine biosynthesis in T. thermophilus. TT_C1695 was originally annotated as a protein with unknown function belonging to the haloacid dehalogenase-like hydrolase (HAD) superfamily. The HAD superfamily, which comprises phosphatases against a variety of substrates, includes also the classical PSP as a member. However, the amino acid sequence of the TT_C1695 was more similar to phosphatases acting on non-phosphoserine substrates than classical PSP; therefore, a BLASTP search and phylogenetic analysis failed to predict TT_C1695 as a PSP. Our results strongly suggest that the T. thermophilus PSP and classical PSP evolved specificity for phosphoserine independently. ENZYMES: Phosphoserine phosphatase (PSP; EC 3.1.3.3); serine hydroxymethyltransferase (EC 2.1.2.1); 3-phosphoglycerate dehydrogenase (EC 1.1.1.95); 3-phosphoserine aminotransferase (EC 2.6.1.52).
Collapse
Affiliation(s)
- Yoko Chiba
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan
| | - Ayako Yoshida
- Biotechnology Research Center, The University of Tokyo, Japan
| | - Shigeru Shimamura
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan
| | - Masafumi Kameya
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan
| |
Collapse
|
6
|
Yoshida A, Kosono S, Nishiyama M. Characterization of two 2-isopropylmalate synthase homologs from Thermus thermophilus HB27. Biochem Biophys Res Commun 2018; 501:465-470. [DOI: 10.1016/j.bbrc.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
|
7
|
Harrington LB, Jha RK, Kern TL, Schmidt EN, Canales GM, Finney KB, Koppisch AT, Strauss CEM, Fox DT. Rapid Thermostabilization of Bacillus thuringiensis Serovar Konkukian 97-27 Dehydroshikimate Dehydratase through a Structure-Based Enzyme Design and Whole Cell Activity Assay. ACS Synth Biol 2017; 6:120-129. [PMID: 27548779 DOI: 10.1021/acssynbio.6b00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermostabilization of an enzyme with complete retention of catalytic efficiency was demonstrated on recombinant 3-dehydroshikimate dehydratase (DHSase or wtAsbF) from Bacillus thuringiensis serovar konkukian 97-27 (hereafter, B. thuringiensis 97-27). The wtAsbF is relatively unstable at 37 °C, in vitro (t1/237 = 15 min), in the absence of divalent metal. We adopted a structure-based design to identify stabilizing mutations and created a combinatorial library based upon predicted mutations at specific locations on the enzyme surface. A diversified asbF library (∼2000 variants) was expressed in E. coli harboring a green fluorescent protein (GFP) reporter system linked to the product of wtAsbF activity (3,4-dihydroxybenzoate, DHB). Mutations detrimental to DHSase function were rapidly eliminated using a high throughput fluorescence activated cell sorting (FACS) approach. After a single sorting round and heat screen at 50 °C, a triple AsbF mutant (Mut1), T61N, H135Y, and H257P, was isolated and characterized. The half-life of Mut1 at 37 °C was >10-fold higher than the wtAsbF (t1/237 = 169 min). Further, the second-order rate constants for both wtAsbF and Mut1 were approximately equal (9.9 × 105 M-1 s-1, 7.8 × 105 M-1 s-1, respectively), thus demonstrating protein thermostability did not come at the expense of enzyme thermophilicity. In addition, in vivo overexpression of Mut1 in E. coli resulted in a ∼60-fold increase in functional enzyme when compared to the wild-type enzyme under the identical expression conditions. Finally, overexpression of the thermostable AsbF resulted in an approximate 80-120% increase in DHB accumulation in the media relative to the wild-type enzyme.
Collapse
Affiliation(s)
- Lucas B. Harrington
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Ramesh K. Jha
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Theresa L. Kern
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Emily N. Schmidt
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Gustavo M. Canales
- Department
of Chemistry, Northern Arizona University, P.O. Box 5698, Flagstaff, Arizona 86001, United States
| | - Kellan B. Finney
- Department
of Chemistry, Northern Arizona University, P.O. Box 5698, Flagstaff, Arizona 86001, United States
| | - Andrew T. Koppisch
- Department
of Chemistry, Northern Arizona University, P.O. Box 5698, Flagstaff, Arizona 86001, United States
| | - Charlie E. M. Strauss
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - David T. Fox
- Chemistry
Division, Los Alamos National Laboratory, P.O. Box 1663, MS E554, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
8
|
Structure and function of an ancestral-type β-decarboxylating dehydrogenase from Thermococcus kodakarensis. Biochem J 2016; 474:105-122. [PMID: 27831491 DOI: 10.1042/bcj20160699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/05/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022]
Abstract
β-Decarboxylating dehydrogenases, which are involved in central metabolism, are considered to have diverged from a common ancestor with broad substrate specificity. In a molecular phylogenetic analysis of 183 β-decarboxylating dehydrogenase homologs from 84 species, TK0280 from Thermococcus kodakarensis was selected as a candidate for an ancestral-type β-decarboxylating dehydrogenase. The biochemical characterization of recombinant TK0280 revealed that the enzyme exhibited dehydrogenase activities toward homoisocitrate, isocitrate, and 3-isopropylmalate, which correspond to key reactions involved in the lysine biosynthetic pathway, tricarboxylic acid cycle, and leucine biosynthetic pathway, respectively. In T. kodakarensis, the growth characteristics of the KUW1 host strain and a TK0280 deletion strain suggested that TK0280 is involved in lysine biosynthesis in this archaeon. On the other hand, gene complementation analyses using Thermus thermophilus as a host revealed that TK0280 functions as both an isocitrate dehydrogenase and homoisocitrate dehydrogenase in this organism, but not as a 3-isopropylmalate dehydrogenase, most probably reflecting its low catalytic efficiency toward 3-isopropylmalate. A crystallographic study on TK0280 binding each substrate indicated that Thr71 and Ser80 played important roles in the recognition of homoisocitrate and isocitrate while the hydrophobic region consisting of Ile82 and Leu83 was responsible for the recognition of 3-isopropylmalate. These analyses also suggested the importance of a water-mediated hydrogen bond network for the stabilization of the β3-α4 loop, including the Thr71 residue, with respect to the promiscuity of the substrate specificity of TK0280.
Collapse
|
9
|
Enhancing thermostability and the structural characterization of Microbacterium saccharophilum K-1 β-fructofuranosidase. Appl Microbiol Biotechnol 2014; 98:6667-77. [PMID: 24633372 DOI: 10.1007/s00253-014-5645-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
A β-fructofuranosidase from Microbacterium saccharophilum K-1 (formerly known as Arthrobacter sp. K-1) is useful for producing the sweetener lactosucrose (4(G)-β-D-galactosylsucrose). Thermostability of the β-fructofuranosidase was enhanced by random mutagenesis and saturation mutagenesis. Clones with enhanced thermostability included mutations at residues Thr47, Ser200, Phe447, Phe470, and Pro500. In the highest stability mutant, T47S/S200T/F447P/F470Y/P500S, the half-life at 60 °C was 182 min, 16.5-fold longer than the wild-type enzyme. A comparison of the crystal structures of the full-length wild-type enzyme and three mutants showed that various mechanisms appear to be involved in thermostability enhancement. In particular, the replacement of Phe447 with Val or Pro induced a conformational change in an adjacent residue His477, which results in the formation of a new hydrogen bond in the enzyme. Although the thermostabilization mechanisms of the five residue mutations were explicable on the basis of the crystal structures, it appears to be difficult to predict which amino acid residues should be modified to obtain thermostabilized enzymes.
Collapse
|