1
|
Wróbel TM, Sharma K, Mannella I, Oliaro-Bosso S, Nieckarz P, Du Toit T, Voegel CD, Rojas Velazquez MN, Yakubu J, Matveeva A, Therkelsen S, Jørgensen FS, Pandey AV, Pippione AC, Lolli ML, Boschi D, Björkling F. Exploring the Potential of Sulfur Moieties in Compounds Inhibiting Steroidogenesis. Biomolecules 2023; 13:1349. [PMID: 37759751 PMCID: PMC10526780 DOI: 10.3390/biom13091349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
This study reports on the synthesis and evaluation of novel compounds replacing the nitrogen-containing heterocyclic ring on the chemical backbone structure of cytochrome P450 17α-hydroxylase/12,20-lyase (CYP17A1) inhibitors with a phenyl bearing a sulfur-based substituent. Initial screening revealed compounds with marked inhibition of CYP17A1 activity. The selectivity of compounds was thereafter determined against cytochrome P450 21-hydroxylase, cytochrome P450 3A4, and cytochrome P450 oxidoreductase. Additionally, the compounds showed weak inhibitory activity against aldo-keto reductase 1C3 (AKR1C3). The compounds' impact on steroid hormone levels was also assessed, with some notable modulatory effects observed. This work paves the way for developing more potent dual inhibitors specifically targeting CYP17A1 and AKR1C3.
Collapse
Affiliation(s)
- Tomasz M. Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Katyayani Sharma
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Iole Mannella
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | | | - Patrycja Nieckarz
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Therina Du Toit
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Clarissa Daniela Voegel
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Department of Nephrology and Hypertension, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Maria Natalia Rojas Velazquez
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Jibira Yakubu
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Anna Matveeva
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Søren Therkelsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Amit V. Pandey
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Agnese C. Pippione
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Marco L. Lolli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Donatella Boschi
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Wróbel TM, Jørgensen FS, Pandey AV, Grudzińska A, Sharma K, Yakubu J, Björkling F. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment. J Med Chem 2023; 66:6542-6566. [PMID: 37191389 DOI: 10.1021/acs.jmedchem.3c00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CYP17A1 is an enzyme that plays a major role in steroidogenesis and is critically involved in the biosynthesis of steroid hormones. Therefore, it remains an attractive target in several serious hormone-dependent cancer diseases, such as prostate cancer and breast cancer. The medicinal chemistry community has been committed to the discovery and development of CYP17A1 inhibitors for many years, particularly for the treatment of castration-resistant prostate cancer. The current Perspective reflects upon the discovery and evaluation of non-steroidal CYP17A1 inhibitors from a medicinal chemistry angle. Emphasis is placed on the structural aspects of the target, key learnings from the presented chemotypes, and design guidelines for future inhibitors.
Collapse
Affiliation(s)
- Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Amit V Pandey
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Katyayani Sharma
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Jibira Yakubu
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Latysheva AS, Zolottsev VA, Veselovsky AV, Scherbakov KA, Morozevich GE, Zhdanov DD, Novikov RA, Misharin AY. Oxazolinyl derivatives of androst-16-ene as inhibitors of CYP17A1 activity and prostate carcinoma cells proliferation: Effects of substituents in oxazolinyl moiety. J Steroid Biochem Mol Biol 2023; 230:106280. [PMID: 36870373 DOI: 10.1016/j.jsbmb.2023.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Steroid derivatives modified with nitrogen containing heterocycles are known to inhibit activity of steroidogenic enzymes, decrease proliferation of cancer cells and attract attention as promising anticancer agents. Specifically, 2'-(3β-hydroxyandrosta-5,16-dien-17-yl)-4',5'-dihydro-1',3'-oxazole 1a potently inhibited proliferation of prostate carcinoma cells. In this study we synthesized and investigated five new derivatives of 3β-hydroxyandrosta-5,16-diene comprising 4'-methyl or 4'-phenyl substituted oxazolinyl cycle 1 (b-f). Docking of compounds 1 (a-f) to CYP17A1 active site revealed that the presence of substitutents at C4' atom in oxazoline cycle, as well as C4' atom configuration, significantly affect docking poses of compounds in the complexes with enzyme. Testing of compounds 1 (a-f) as CYP17A1 inhibitors revealed that the only compound 1a, comprising unsubstituted oxazolinyl moiety, demonstrated strong inhibitory activity, while other compounds 1 (b-f) were slightly active or non active. Compounds 1 (a-f) efficiently decreased growth and proliferation of prostate carcinoma LNCaP and PC-3 cells at 96 h incubation; the effect of compound 1a was the most powerful. Compound 1a efficiently stimulated apoptosis and caused PC-3 cells death, that was demonstrated by a direct comparison of pro-apoptotic effects of compound 1a and abiraterone.
Collapse
Affiliation(s)
- Alexandra S Latysheva
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya street, 119435 Moscow, Russia
| | - Vladimir A Zolottsev
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya street, 119435 Moscow, Russia; RUDN University, 6, Miklukho-Maklaya street, 117198 Moscow, Russia.
| | - Alexander V Veselovsky
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya street, 119435 Moscow, Russia
| | - Kirill A Scherbakov
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya street, 119435 Moscow, Russia
| | - Galina E Morozevich
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya street, 119435 Moscow, Russia
| | - Dmitry D Zhdanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya street, 119435 Moscow, Russia; RUDN University, 6, Miklukho-Maklaya street, 117198 Moscow, Russia
| | - Roman A Novikov
- V.A. Engelhardt Institute of Molecular Biology RAS, 32, Vavilov street, Moscow, Russia
| | - Alexander Y Misharin
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya street, 119435 Moscow, Russia
| |
Collapse
|
4
|
Luo T, Jiang JG. Anticancer Effects and Molecular Target of Theaflavins from Black Tea Fermentation in Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15052-15065. [PMID: 34878780 DOI: 10.1021/acs.jafc.1c05313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Black tea is one of the most popular beverages in the world, and numerous epidemiological studies have shown that drinking black tea is good for health. As a natural tea pigment formed during the fermentation of black tea, the content of theaflavins accounts for only 2-6% of the dry weight of black tea, but they have a great impact on the color and taste of black tea soup. Recently, a large number of studies have shown that theaflavins have a significant anticancer effect. In this Perspective, we first state the physical and chemical properties, separation and purification methods, and biological formation pathways of theaflavins and analyze their safety and oral bioavailability and the structure-activity relationship of their antioxidant and anticancer activities; then, we describe in detail their anticancer effect in vitro and in vivo and highlight their various molecular targets involved in cancer inhibition. The anticancer molecular targets of theaflavins are mainly cell-cycle regulatory proteins, apoptosis-related proteins, cell-migration-related proteins, and growth transcription factors. Finally, the possibility of developing new health-care food based on theaflavins is discussed. This Perspective is expected to provide a theoretical basis for the anticancer application of theaflavins in the future.
Collapse
Affiliation(s)
- Ting Luo
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Khan II, Karshieva SS, Sokolova DV, Spirina TS, Zolottsev VA, Latysheva AS, Anisimova NY, Komarova MV, Yakunina MN, Nitetskaya TA, Misharin AY, Pokrovsky VS. Antiproliferative, proapoptotic, and tumor-suppressing effects of the novel anticancer agent alsevirone in prostate cancer cells and xenografts. Arch Pharm (Weinheim) 2021; 355:e2100316. [PMID: 34668210 DOI: 10.1002/ardp.202100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 11/08/2022]
Abstract
The aim of this study was to explore the mechanisms of action of alsevirone in prostate cancer (PC) in vitro and in vivo: CYP17A1 inhibition, cytotoxic, apoptotic, and antitumor effects in comparison with abiraterone. The CYP17A1-inhibitory activity was investigated in rat testicular microsomes using high-performance liquid chromatography. Testosterone levels were evaluated using enzyme-linked immunoassay. IC50 values were calculated for PC3, DU-145, LNCaP, and 22Rv1 cells using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test. The antitumor effect in vivo was studied in DU-145 and 22Rv1 subcutaneous xenografts in Balb/c nude mice. Alsevirone reduced the CYP17A1-inhibitory activity by 98% ± 0.2%. A statistically significant reduction in the testosterone concentration in murine blood was recorded after the 7th administration of 300 mg/kg alsevirone at 0.31 ± 0.03 ng/ml (p < .001) versus 0.98 ± 0.22 ng/ml (p = .392) after abiraterone administration and 1.52 ± 0.49 ng/ml in control animals. Alsevirone was more cytotoxic than abiraterone in DU-145, LNCaP, and 22Rv1 cells, with IC50 values of 23.80 ± 1.18 versus 151.43 ± 23.70 μM, 22.87 ± 0.54 versus 28.80 ± 1.61 μM, and 35.86 ± 5.63 versus 109.87 ± 35.15 μM, respectively. Alsevirone and abiraterone significantly increased annexin V-positive, caspase 3/7-positive, and activated Bcl-2-positive cells. In 22Rv1 xenografts, alsevirone 300 mg/kg × 10/24 h per os inhibited tumor growth: on Day 9 of treatment, tumor growth inhibition = 59% (p = .022). Thus, alsevirone demonstrated significant antitumor activity associated with CYP17A1 inhibition, apoptosis in PC cells, and testosterone reduction.
Collapse
Affiliation(s)
- Irina I Khan
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia.,Department of biochemistry, RUDN University, Moscow, Russia
| | - Saida S Karshieva
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Darina V Sokolova
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia.,Department of biochemistry, RUDN University, Moscow, Russia
| | - Tatiana S Spirina
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Vladimir A Zolottsev
- Department of biochemistry, RUDN University, Moscow, Russia.,Laboratory of synthesis of physiologically active compounds, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexandra S Latysheva
- Laboratory of synthesis of physiologically active compounds, Institute of Biomedical Chemistry, Moscow, Russia
| | - Natalia Y Anisimova
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia.,Laboratory of polymer materials, NUST "MISIS", Moscow, Russia
| | - Marina V Komarova
- Department of laser and biotechnical systems, Samara University, Samara, Russia
| | - Marina N Yakunina
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Tatiana A Nitetskaya
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Alexander Y Misharin
- Laboratory of synthesis of physiologically active compounds, Institute of Biomedical Chemistry, Moscow, Russia
| | - Vadim S Pokrovsky
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia.,Department of biochemistry, RUDN University, Moscow, Russia.,Center of genetics and life sciences, Sirius University of Science and Technology, Sochi, Krasnodarsky Kray, Russia
| |
Collapse
|
6
|
Szabó N, Ajduković JJ, Djurendić EA, Sakač MN, Ignáth I, Gardi J, Mahmoud G, Klisurić OR, Jovanović-Šanta S, Penov Gaši KM, Szécsi M. Determination of 17α-hydroxylase-C17,20-lyase (P45017α) enzyme activities and their inhibition by selected steroidal picolyl and picolinylidene compounds. ACTA BIOLOGICA HUNGARICA 2015; 66:41-51. [PMID: 25740437 DOI: 10.1556/abiol.66.2015.1.4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
17α-hydroxylase-C17,20-lyase (P45017α) is a key regulator enzyme of the steroid hormone biosynthesis in both the adrenals and the testes. Inhibition of this enzyme can block androgen synthesis in an early step, and may thereby be useful in the treatment of several androgen-dependent diseases. We developed radio-substrate in vitro incubation methods for the determination of the distinct 17α-hydroxylase and C17,20-lyase activities of the enzyme using rat testicular homogenate as enzyme source. With this method we have studied the inhibiting activity of selected steroidal picolyl and picolinylidene compounds. Tests revealed a substantial inhibitory action of the 17-picolinyliden-androst-4-en-3-one compound.
Collapse
Affiliation(s)
- Nikoletta Szabó
- University of Szeged 1st Department of Medicine Korányi fasor 8-10 H-6720 Szeged Hungary
| | - Jovana J Ajduković
- University of Novi Sad Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences 3 Trg D. Obradovica 21000 Novi Sad Serbia
| | - Evgenija A Djurendić
- University of Novi Sad Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences 3 Trg D. Obradovica 21000 Novi Sad Serbia
| | - Marija N Sakač
- University of Novi Sad Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences 3 Trg D. Obradovica 21000 Novi Sad Serbia
| | - Imre Ignáth
- University of Szeged 1st Department of Medicine Korányi fasor 8-10 H-6720 Szeged Hungary
| | - János Gardi
- University of Szeged 1st Department of Medicine Korányi fasor 8-10 H-6720 Szeged Hungary
| | - Gábor Mahmoud
- University of Szeged 1st Department of Medicine Korányi fasor 8-10 H-6720 Szeged Hungary
| | - Olivera R Klisurić
- University of Novi Sad Department of Physics, Faculty of Sciences 4 Trg D. Obradovica 21000 Novi Sad Serbia
| | - Suzana Jovanović-Šanta
- University of Novi Sad Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences 3 Trg D. Obradovica 21000 Novi Sad Serbia
| | - Katarina M Penov Gaši
- University of Novi Sad Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences 3 Trg D. Obradovica 21000 Novi Sad Serbia
| | - Mihály Szécsi
- University of Szeged 1st Department of Medicine Korányi fasor 8-10 H-6720 Szeged Hungary
| |
Collapse
|
7
|
Kusumoto N, Aburai N, Ashitani T, Takahashi K, Kimura KI. Pharmacological Prospects of Oxygenated Abietane-Type Diterpenoids from <i>Taxodium distichum</i> Cones. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abc.2014.42015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|