1
|
Cai M, Wu X, Liang X, Hu H, Liu Y, Yong T, Li X, Xiao C, Gao X, Chen S, Xie Y, Wu Q. Comparative proteomic analysis of two divergent strains provides insights into thermotolerance mechanisms of Ganoderma lingzhi. Fungal Genet Biol 2023; 167:103796. [PMID: 37146899 DOI: 10.1016/j.fgb.2023.103796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/18/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Heat stress (HS) is a major abiotic factor influencing fungal growth and metabolism. However, the genetic basis of thermotolerance in Ganoderma lingzhi (G. lingzhi) remains largely unknown. In this study, we investigated the thermotolerance capacities of 21 G. lingzhi strains and screened the thermo-tolerant (S566) and heat-sensitive (Z381) strains. The mycelia of S566 and Z381 were collected and subjected to a tandem mass tag (TMT)-based proteome assay. We identified 1493 differentially expressed proteins (DEPs), with 376 and 395 DEPs specific to the heat-tolerant and heat-susceptible genotypes, respectively. In the heat-tolerant genotype, upregulated proteins were linked to stimulus regulation and response. Proteins related to oxidative phosphorylation, glycosylphosphatidylinositol-anchor biosynthesis, and cell wall macromolecule metabolism were downregulated in susceptible genotypes. After HS, the mycelial growth of the heat-sensitive Z381 strain was inhibited, and mitochondrial cristae and cell wall integrity of this strain were severely impaired, suggesting that HS may inhibit mycelial growth of Z381 by damaging the cell wall and mitochondrial structure. Furthermore, thermotolerance-related regulatory pathways were explored by analyzing the protein-protein interaction network of DEPs considered to participate in the controlling the thermotolerance capacity. This study provides insights into G. lingzhi thermotolerance mechanisms and a basis for breeding a thermotolerant germplasm bank for G. lingzhi and other fungi.
Collapse
Affiliation(s)
- Manjun Cai
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaoxian Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaowei Liang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huiping Hu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuanchao Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tianqiao Yong
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiangmin Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chun Xiao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiong Gao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shaodan Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yizhen Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China.
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
2
|
Dutta T, Das S, Gupta I, Koner AL. Construing the metaxin-2 mediated simultaneous localization between mitochondria and nucleolus using molecular viscometry. Chem Sci 2022; 13:12987-12995. [PMID: 36425508 PMCID: PMC9668072 DOI: 10.1039/d2sc03587a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2023] Open
Abstract
Fluorescent probes for specific inter-organelle communication are of massive significance as such communication is essential for a diverse range of cellular events. Here, we present the microviscosity-sensitive fluorescence marker, Quinaldine Red (QR), and its dual organelle targeting light-up response in live cells. This biocompatible probe was able to localize in mitochondria and nucleolus simultaneously. While QR was able to sense the viscosity change inside these compartments under the induced effect of an ionophore and ROS-rich microenvironment, the probe's ability to stain mitochondria remained unperturbed even after protonophore-induced depolarization. Consequently, a systematic quantification was performed to understand the alteration of microviscosity. Similar behavior in two distinct organelles implied that QR binds to metaxin-2 protein, common to mitochondrial and nucleolar proteomes. We believe this is the first of its kind investigation that identifies the inter-organelle communications marker and opens up a new dimension in this field.
Collapse
Affiliation(s)
- Tanoy Dutta
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh-462066 India
| | - Sreeparna Das
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh-462066 India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh-462066 India
| |
Collapse
|
3
|
Ribosome-Directed Therapies in Cancer. Biomedicines 2022; 10:biomedicines10092088. [PMID: 36140189 PMCID: PMC9495564 DOI: 10.3390/biomedicines10092088] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/29/2022] Open
Abstract
The human ribosomes are the cellular machines that participate in protein synthesis, which is deeply affected during cancer transformation by different oncoproteins and is shown to provide cancer cell proliferation and therefore biomass. Cancer diseases are associated with an increase in ribosome biogenesis and mutation of ribosomal proteins. The ribosome represents an attractive anti-cancer therapy target and several strategies are used to identify specific drugs. Here we review the role of different drugs that may decrease ribosome biogenesis and cancer cell proliferation.
Collapse
|
4
|
Awad D, Prattes M, Kofler L, Rössler I, Loibl M, Pertl M, Zisser G, Wolinski H, Pertschy B, Bergler H. Inhibiting eukaryotic ribosome biogenesis. BMC Biol 2019; 17:46. [PMID: 31182083 PMCID: PMC6558755 DOI: 10.1186/s12915-019-0664-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ribosome biogenesis is a central process in every growing cell. In eukaryotes, it requires more than 250 non-ribosomal assembly factors, most of which are essential. Despite this large repertoire of potential targets, only very few chemical inhibitors of ribosome biogenesis are known so far. Such inhibitors are valuable tools to study this highly dynamic process and elucidate mechanistic details of individual maturation steps. Moreover, ribosome biogenesis is of particular importance for fast proliferating cells, suggesting its inhibition could be a valid strategy for treatment of tumors or infections. RESULTS We systematically screened ~ 1000 substances for inhibitory effects on ribosome biogenesis using a microscopy-based screen scoring ribosomal subunit export defects. We identified 128 compounds inhibiting maturation of either the small or the large ribosomal subunit or both. Northern blot analysis demonstrates that these inhibitors cause a broad spectrum of different rRNA processing defects. CONCLUSIONS Our findings show that the individual inhibitors affect a wide range of different maturation steps within the ribosome biogenesis pathway. Our results provide for the first time a comprehensive set of inhibitors to study ribosome biogenesis by chemical inhibition of individual maturation steps and establish the process as promising druggable pathway for chemical intervention.
Collapse
Affiliation(s)
- Dominik Awad
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
- Present address: Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Mathias Loibl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Melanie Pertl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria.
| |
Collapse
|
5
|
Sphingolipid/Pkh1/2-TORC1/Sch9 Signaling Regulates Ribosome Biogenesis in Tunicamycin-Induced Stress Response in Yeast. Genetics 2019; 212:175-186. [PMID: 30824472 DOI: 10.1534/genetics.118.301874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/26/2019] [Indexed: 12/26/2022] Open
Abstract
Reduced ribosome biogenesis in response to environmental conditions is a key feature of cell adaptation to stress. For example, ribosomal genes are transcriptionally repressed when cells are exposed to tunicamycin, a protein glycosylation inhibitor that induces endoplasmic reticulum stress and blocks vesicular trafficking in the secretory pathway. Here, we describe a novel regulatory model, in which tunicamycin-mediated stress induces the accumulation of long-chain sphingoid bases and subsequent activation of Pkh1/2 signaling, which leads to decreased expression of ribosomal protein genes via the downstream effectors Pkc1 and Sch9. Target of rapamycin complex 1 (TORC1), an upstream activator of Sch9, is also required. This pathway links ribosome biogenesis to alterations in membrane lipid composition under tunicamycin-induced stress conditions. Our results suggest that sphingolipid/Pkh1/2-TORC1/Sch9 signaling is an important determinant for adaptation to tunicamycin-induced stress.
Collapse
|
6
|
Nuzzo D, Inguglia L, Walters J, Picone P, Di Carlo M. A Shotgun Proteomics Approach Reveals a New Toxic Role for Alzheimer's Disease Aβ Peptide: Spliceosome Impairment. J Proteome Res 2017; 16:1526-1541. [PMID: 28157316 DOI: 10.1021/acs.jproteome.6b00925] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteomic changes have been described in many neurodegenerative diseases, including Alzheimer's disease (AD). However, the early events in the onset of the pathology are yet to be fully elucidated. A cell model system in which LAN5 neuroblastoma cells were incubated for a short time with a recombinant form of Aβ42 was utilized. Proteins extracted from these cells were subjected to shotgun proteomics analysis by LTQ-Orbitrap-MS followed by label-free quantitation. By bioinformatics tools we found that the most significant of those found to be up-regulated were related to cytoskeletal dynamics (Rho related) and membrane-related processes. The most significant of the down-regulated proteins were hnRNP-related. In particular, hnRNPs involved in ribosomal biogenesis and in splicing were down-regulated. The latter of these processes stood out as it was highlighted ubiquitously and with the highest significance in the results of every analysis. Furthermore, our findings revealed down-regulation at every stage of the splicing process through down-regulation of every subunit of the spliceosome. Dysregulation of the spliceosome was also confirmed using a Western blot. In conclusion, these data suggest dysregulation of the proteins and processes identified as early events in pathogenesis of AD following Aβ accumulation.
Collapse
Affiliation(s)
- Domenico Nuzzo
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Luigi Inguglia
- Istituto di Biofisica (IBF) , Via Ugo La Malfa 153, 90146 Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology , 90146 Palermo, Italy
| | - Jessica Walters
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Pasquale Picone
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Marta Di Carlo
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
7
|
Yabuki Y, Katayama M, Kodama Y, Sakamoto A, Yatsuhashi A, Funato K, Mizuta K. Arp2/3 complex and Mps3 are required for regulation of ribosome biosynthesis in the secretory stress response. Yeast 2017; 34:155-163. [PMID: 27862269 DOI: 10.1002/yea.3221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 11/11/2022] Open
Abstract
Secretory defects cause transcriptional repression of ribosome biogenesis in Saccharomyces cerevisiae. However, the molecular mechanism underlying secretory defect-induced transcriptional repression of ribosome biogenesis remains to be fully elucidated. In this study, we demonstrated that the Arp2/3 complex was required for reduction of ribosome protein gene expression in response to defective secretion by addition of tunicamycin. Two cmd1 mutants, cmd1-228 and cmd1-239 that cause mislocalization of calmodulin and defective mitotic spindle formation, respectively, failed to interact with Arc35, a component of the Arp2/3 complex. These mutants also caused defects in the reduction of ribosome protein gene expression induced by secretory blockade. A mutation in TUB4 (tub4-1), whose product has an essential function in microtubule organization, showed a similar response. In addition, we showed that the response to a secretory defect required SUN protein Mps3, which was localized at the nuclear envelope and involved in spindle pole body assembly. These results suggest that the Arp2/3 complex is required to transmit signals resulting from secretory blockade, and that the spindle pole body functions as a transit point from cytoplasm to Mps3 at the nuclear envelope. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yukari Yabuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Masako Katayama
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Yushi Kodama
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Akiko Sakamoto
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Ayumi Yatsuhashi
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Kouichi Funato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| |
Collapse
|
8
|
Xiao H, Smeekens JM, Wu R. Quantification of tunicamycin-induced protein expression and N-glycosylation changes in yeast. Analyst 2016; 141:3737-45. [PMID: 27007503 DOI: 10.1039/c6an00144k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tunicamycin is a potent protein N-glycosylation inhibitor that has frequently been used to manipulate protein glycosylation in cells. However, protein expression and glycosylation changes as a result of tunicamycin treatment are still unclear. Using yeast as a model system, we systematically investigated the cellular response to tunicamycin at the proteome and N-glycoproteome levels. By utilizing modern mass spectrometry-based proteomics, we quantified 4259 proteins, which nearly covers the entire yeast proteome. After the three-hour tunicamycin treatment, more than 5% of proteins were down-regulated by at least 2 fold, among which proteins related to several glycan metabolism and glycolysis-related pathways were highly enriched. Furthermore, several proteins in the canonical unfolded protein response pathway were up-regulated because the inhibition of protein N-glycosylation impacts protein folding and trafficking. We also comprehensively quantified protein glycosylation changes in tunicamycin-treated cells, and more than one third of quantified unique glycopeptides (168 of 465 peptides) were down-regulated. Proteins containing down-regulated glycopeptides were related to glycosylation, glycoprotein metabolic processes, carbohydrate processes, and cell wall organization according to gene ontology clustering. The current results provide the first global view of the cellular response to tunicamycin at the proteome and glycoproteome levels.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | | |
Collapse
|
9
|
Okano A, Wan K, Kanda K, Yabuki Y, Funato K, Mizuta K. SMY2 and SYH1 suppress defects in ribosome biogenesis caused by ebp2 mutations. Biosci Biotechnol Biochem 2015; 79:1481-3. [DOI: 10.1080/09168451.2015.1031077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Ebp2 is an assembly factor of the 60S ribosomal subunit in yeast. We demonstrate that overexpression of SMY2 or SYH1 partially suppresses defects in growth and ribosome biogenesis of ebp2 mutants, and that smy2Δ and syh1Δ exhibit synthetic growth defects with the ebp2 allele. These results suggest that Smy2 and Syh1 may be involved in ribosome biogenesis in relation to Ebp2.
Collapse
Affiliation(s)
- Akira Okano
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kun Wan
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuhiro Kanda
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yukari Yabuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kouichi Funato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
10
|
Roles of Ebp2 and ribosomal protein L36 in ribosome biogenesis in Saccharomyces cerevisiae. Curr Genet 2014; 61:31-41. [PMID: 25119672 DOI: 10.1007/s00294-014-0442-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/10/2014] [Accepted: 07/29/2014] [Indexed: 01/08/2023]
Abstract
Ebp2 plays an essential role in biogenesis of 60S ribosomal subunits. We determined the genetic interactions between EBP2 and RPL36A/B, which encodes ribosomal protein L36a/b. RPL36A/B was a multicopy suppressor to ebp2 mutants, and the suppression was not common to defects in ribosome biogenesis resulting from other mutations of assembly factors. Disruption of RPL36A or RPL36B caused synthetic enhancement of the growth defect of the ebp2-14 allele at high temperatures. Disruption of RPL36B led to a more severe growth defect than that of RPL36A due to imbalances in the expression levels of the duplicated genes. Primer-extension analysis revealed that L36a/b is required for the processing of 27SA2, 27SA3, and 27SBL pre-rRNAs. Two-hybrid analysis indicated that Ebp2 interacts with ribosomal proteins L36a/b, L34a/b, and L8, which in mature ribosomes are located adjacent to each other in close proximity to the 3' end of 5.8S rRNA. These results suggest that Ebp2 functions cooperatively with ribosomal proteins L36, L34, and L8 in biogenesis of the 60S ribosomal subunit.
Collapse
|
11
|
Nα-Acetyltransferase NatA Is Involved in Ribosome Synthesis inSaccharomyces cerevisiae. Biosci Biotechnol Biochem 2014; 77:631-8. [DOI: 10.1271/bbb.120860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Yabuki Y, Kodama Y, Katayama M, Sakamoto A, Kanemaru H, Wan K, Mizuta K. Glycogen synthase kinase-3 is involved in regulation of ribosome biogenesis in yeast. Biosci Biotechnol Biochem 2014; 78:800-5. [PMID: 25035982 DOI: 10.1080/09168451.2014.905183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Secretory defects cause transcriptional repression of both ribosomal proteins and ribosomal RNA genes in Saccharomyces cerevisiae. Rrs1, a trans-acting factor that participates in ribosome biogenesis, is involved in the signaling pathway induced by secretory defects. Here, we found that Rrs1 interacts with two homologs of the glycogen synthase kinase-3 (GSK-3), Rim11, and Mrk1. Rrs1 possesses a repetitive consensus amino acid sequence for phosphorylation by GSK-3, and mutation of this sequence abolished the interaction of Rrs1 with Rim11 and Mrk1. Although this mutation did not affect vegetative cell growth or secretory response, disruption of all four genes encoding GSK-3 homologs, especially Mck1, diminished the transcriptional repression of ribosomal protein genes in response to secretory defects. Among the four GSK-3 kinases, Mck1 appears to be the primary mediator of this response, while the other GSK-3 kinases contribute redundantly.
Collapse
Affiliation(s)
- Yukari Yabuki
- a Department of Biofunctional Science and Technology , Graduate School of Biosphere Science, Hiroshima University , Higashi-Hiroshima , Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Horigome C, Mizuta K. Ribosome biogenesis factors working with a nuclear envelope SUN domain protein: new players in the solar system. Nucleus 2012; 3:22-8. [PMID: 22156743 DOI: 10.4161/nucl.18930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nucleolus, the most prominent structure observed in the nucleus, is often called a “ribosome factory.” Cells spend an enormous fraction of their resources to achieve the mass-production of ribosomes required by rapid growth. On the other hand, ribosome biogenesis is also tightly controlled, and must be coordinated with other cellular processes. Ribosomal proteins and ribosome biogenesis factors are attractive candidates for this link. Recent results suggest that some of them have functions beyond ribosome biogenesis. Here we review recent progress on ribosome biogenesis factors, Ebp2 and Rrs1, in yeast Saccharomyces cerevisiae. In this organism, Ebp2 and Rrs1 are found in the nucleolus and at the nuclear periphery. At the nuclear envelope, these proteins interact with a membrane-spanning SUN domain protein, Mps3, and play roles in telomere clustering and silencing along with the silent information regulator Sir4. We propose that a protein complex consisting Ebp2, Rrs1 and Mps3 is involved in a wide range of activities at the nuclear envelope.
Collapse
Affiliation(s)
- Chihiro Horigome
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.
| | | |
Collapse
|
14
|
Shimoji K, Jakovljevic J, Tsuchihashi K, Umeki Y, Wan K, Kawasaki S, Talkish J, Woolford JL, Mizuta K. Ebp2 and Brx1 function cooperatively in 60S ribosomal subunit assembly in Saccharomyces cerevisiae. Nucleic Acids Res 2012; 40:4574-88. [PMID: 22319211 PMCID: PMC3378894 DOI: 10.1093/nar/gks057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The yeast protein Ebp2 is required for early steps in production of 60S ribosomal subunits. To search for cofactors with which Ebp2 functions, or substrates on which it acts, we screened for mutants that were synthetically lethal (sl) with the ebp2-14 mutation. Four different mutant alleles of the 60S ribosomal subunit assembly factor Brx1 were found. To investigate defects of the double mutant, we constructed strains conditional for the ebp2-14 brx1- synthetic lethal phenotype. These ebp2-14 brx1 mutants were defective in processing of 27S pre-rRNA and production of 60S subunits, under conditions where each single mutant was not. Ebp2 and Brx1 exhibit a strong two-hybrid interaction, which is eliminated by some combinations of brx1 and ebp2 mutations. In one such mutant, Ebp2 and Brx1 can still associate with pre-ribosomes, but subunit maturation is perturbed. Depletion of either Ebp2 or Brx1 revealed that Brx1 requires Ebp2 for its stable association with pre-ribosomes, but Ebp2 does not depend on the presence of Brx1 to enter pre-ribosomes. These results suggest that assembly of 60S ribosomal subunits requires cooperation of Ebp2 with Brx1, together with other molecules present in pre-ribosomes, potentially including several found in assembly subcomplexes with Brx1 and Ebp2.
Collapse
Affiliation(s)
- Kaori Shimoji
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jelena Jakovljevic
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kanako Tsuchihashi
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yuka Umeki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kun Wan
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Suzuka Kawasaki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jason Talkish
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - John L. Woolford
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- *To whom correspondence should be addressed. Tel: +81 824 247 923; Fax: +81 824 247 923;
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- *To whom correspondence should be addressed. Tel: +81 824 247 923; Fax: +81 824 247 923;
| |
Collapse
|
15
|
Horigome C, Okada T, Shimazu K, Gasser SM, Mizuta K. Ribosome biogenesis factors bind a nuclear envelope SUN domain protein to cluster yeast telomeres. EMBO J 2011; 30:3799-811. [PMID: 21822217 DOI: 10.1038/emboj.2011.267] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 07/07/2011] [Indexed: 11/09/2022] Open
Abstract
Two interacting ribosome biogenesis factors, Ebp2 and Rrs1, associate with Mps3, an essential inner nuclear membrane protein. Both are found in foci along the nuclear periphery, like Mps3, as well as in the nucleolus. Temperature-sensitive ebp2 and rrs1 mutations that compromise ribosome biogenesis displace the mutant proteins from the nuclear rim and lead to a distorted nuclear shape. Mps3 is known to contribute to the S-phase anchoring of telomeres through its interaction with the silent information regulator Sir4 and yKu. Intriguingly, we find that both Ebp2 and Rrs1 interact with the C-terminal domain of Sir4, and that conditional inactivation of either ebp2 or rrs1 interferes with both the clustering and silencing of yeast telomeres, while telomere tethering to the nuclear periphery remains intact. Importantly, expression of an Ebp2-Mps3 fusion protein in the ebp2 mutant suppresses the defect in telomere clustering, but not its defects in growth or ribosome biogenesis. Our results suggest that the ribosome biogenesis factors Ebp2 and Rrs1 cooperate with Mps3 to mediate telomere clustering, but not telomere tethering, by binding Sir4.
Collapse
Affiliation(s)
- Chihiro Horigome
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|
16
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|