1
|
Park JS, Choi HJ, Jung KM, Lee KY, Shim JH, Park KJ, Kim YM, Han JY. Production of recombinant human IgG1 Fc with beneficial N-glycosylation pattern for anti-inflammatory activity using genome-edited chickens. Commun Biol 2023; 6:589. [PMID: 37264071 DOI: 10.1038/s42003-023-04937-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
Intravenous immunoglobulin (IVIG) is a plasma-derived polyclonal IgG used for treatment of autoimmune diseases. Studies show that α-2,6 sialylation of the Fc improves anti-inflammatory activity. Also, afucosylation of the Fc efficiently blocks FcγRIIIA by increasing monovalent affinity to this receptor, which can be beneficial for treatment of refractory immune thrombocytopenia (ITP). Here, we generated genome-edited chickens that synthesize human IgG1 Fc in the liver and secrete α-2,6 sialylated and low-fucosylated human IgG1 Fc (rhIgG1 Fc) into serum and egg yolk. Also, rhIgG1 Fc has higher affinity for FcγRIIIA than commercial IVIG. Thus, rhIgG1 Fc efficiently inhibits immune complex-mediated FcγRIIIA crosslinking and subsequent ADCC response. Furthermore, rhIgG1 Fc exerts anti-inflammatory activity in a passive ITP model, demonstrating chicken liver derived rhIgG1 Fc successfully recapitulated efficacy of IVIG. These results show that genome-edited chickens can be used as a production platform for rhIgG1 Fc with beneficial N-glycosylation pattern for anti-inflammatory activities.
Collapse
Affiliation(s)
- Jin Se Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Avinnogen Co., Ltd, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyeon Shim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Avinnogen Co., Ltd, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Maki Y, Otani Y, Okamoto R, Izumi M, Kajihara Y. Isolation and characterization of high-mannose type glycans containing five or six mannose residues from hen egg yolk. Carbohydr Res 2022; 521:108680. [PMID: 36156417 DOI: 10.1016/j.carres.2022.108680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
High-mannose type glycans play important roles in biosynthesis of glycoproteins including glycoprotein quality control system. In the endoplasmic reticulum (ER), α1,2-mannosidases cleave several mannose (Man) residues to give small high-mannose type glycans, such as glycans containing five or six mannose residues (M5-glycan or M6-glycan). These glycans are reported to act as a signal for degradation processes of glycoproteins in the ER. In this work, we isolated the M5-glycan and the M6-glycan from delipidated egg yolk and confirmed that their structures were identical to human type glycans based on rigorous NMR experiments, suggesting the potential use for semisynthesis of glycoconjugates and glycan analysis.
Collapse
Affiliation(s)
- Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan; Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yuiko Otani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan; Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Masayuki Izumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
3
|
Chen Q, Zhang Y, Zhang K, Liu J, Pan H, Wang X, Li S, Hu D, Lin Z, Zhao Y, Hou G, Guan F, Li H, Liu S, Ren Y. Profiling the Bisecting N-acetylglucosamine Modification in Amniotic Membrane via Mass Spectrometry. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:648-656. [PMID: 35123071 PMCID: PMC9880894 DOI: 10.1016/j.gpb.2021.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 01/31/2023]
Abstract
Bisecting N-acetylglucosamine (GlcNAc), a GlcNAc linked to the core β-mannose residue via a β1,4 linkage, is a special type of N-glycosylation that has been reported to be involved in various biological processes, such as cell adhesion and fetal development. This N-glycan structure is abundant in human trophoblasts, which is postulated to be resistant to natural killer cell-mediated cytotoxicity, enabling a mother to nourish a fetus without rejection. In this study, we hypothesized that the human amniotic membrane, which serves as the last barrier for the fetus, may also express bisected-type glycans. To test this hypothesis, glycomic analysis of the human amniotic membrane was performed, and bisected N-glycans were detected. Furthermore, our proteomic data, which have been previously employed to explore human missing proteins, were analyzed and the presence of bisecting GlcNAc-modified peptides was confirmed. A total of 41 glycoproteins with 43 glycopeptides were found to possess a bisecting GlcNAc, and 25 of these glycoproteins were reported to exhibit this type of modification for the first time. These results provide insights into the potential roles of bisecting GlcNAc modification in the human amniotic membrane, and can be beneficial to functional studies on glycoproteins with bisecting GlcNAc modifications and functional studies on immune suppression in human placenta.
Collapse
Affiliation(s)
| | | | | | - Jie Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Siqi Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Dandan Hu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Yun Zhao
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medical Chemistry, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Hong Li
- Shenzhen Seventh People's Hospital, Shenzhen 518081, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen 518083, China,Corresponding authors.
| | - Yan Ren
- BGI-Shenzhen, Shenzhen 518083, China,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,Corresponding authors.
| |
Collapse
|
4
|
Melo Diaz JM, Peel SR, Spencer DI, Hendel JL. Extraction and purification of a High Mannose type oligosaccharide from Phaseolus lunatus beans by oxidative release with sodium hypochlorite. Carbohydr Res 2022; 517:108583. [DOI: 10.1016/j.carres.2022.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/20/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
|
5
|
Melo Diaz JM, Moran AB, Peel SR, Hendel JL, Spencer DIR. Egg yolk sialylglycopeptide: purification, isolation and characterization of N-glycans from minor glycopeptide species. Org Biomol Chem 2022; 20:4905-4914. [PMID: 35593095 DOI: 10.1039/d2ob00615d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sialylglycopeptide (SGP) is a readily available naturally occurring glycopeptide obtained from hen egg yolk which is now commercially available. During SGP extraction, other minor glycopeptide species are identified, bearing N-glycan structures that might be of interest, such as asymmetrically branched and triantennary glycans. As the scale of SGP production increases, recovery of minor glycopeptides and their N-glycans can become more feasible. In this paper, we aim to provide structural characterization of the N-glycans derived from these minor glycopeptides.
Collapse
Affiliation(s)
- Javier Mauricio Melo Diaz
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK.
- Department of Chemistry Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin, Ireland
| | - Alan B Moran
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK.
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Simon R Peel
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK.
| | | | | |
Collapse
|
6
|
Park JS, Lee KY, Han JY. Precise Genome Editing in Poultry and Its Application to Industries. Genes (Basel) 2020; 11:E1182. [PMID: 33053652 PMCID: PMC7601607 DOI: 10.3390/genes11101182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022] Open
Abstract
Poultry such as chickens are valuable model animals not only in the food industry, but also in developmental biology and biomedicine. Recently, precise genome-editing technologies mediated by the CRISPR/Cas9 system have developed rapidly, enabling the production of genome-edited poultry models with novel traits that are applicable to basic sciences, agriculture, and biomedical industry. In particular, these techniques have been combined with cultured primordial germ cells (PGCs) and viral vector systems to generate a valuable genome-edited avian model for a variety of purposes. Here, we summarize recent progress in CRISPR/Cas9-based genome-editing technology and its applications to avian species. In addition, we describe further applications of genome-edited poultry in various industries.
Collapse
Affiliation(s)
| | | | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.S.P.); (K.Y.L.)
| |
Collapse
|
7
|
Sanes JT, Hinou H, Lee YC, Nishimura SI. Glycoblotting of Egg White Reveals Diverse N-Glycan Expression in Quail Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:531-540. [PMID: 30537828 DOI: 10.1021/acs.jafc.8b04782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The glycan part of glycoproteins is known to be involved in the structure and modulatory functions of glycoproteins, serving as ligands for cell-to-cell interactions, and as specific ligands for cell-to-microbe interactions. It is believed that intraspecies and interspecies variations in glycosylation exist. As an approach to better understand glycan diversity, egg whites (EW) from four different quail species are studied by the well-established glycoblotting procedure, a glycan enrichment and analysis method. N-Glycans were classified and the profiles were established for quail egg white samples which showed 21 relevant glycan peaks; 18 peaks were expressed significantly, and 10 glycan peaks are found to be abundant in certain species. The result establishes glycan profiles for Blue Scaled, Bobwhite, Japanese, and Mountain Quail egg whites and shows a unique difference among glycan expressions, particularly, high mannose in Japanese Quail and tetra-antennary glycan structure for other quail species.
Collapse
Affiliation(s)
- Jurgen T Sanes
- Faculty of Advanced Life Science and Graduate School of Life Science , Hokkaido University , N21, W11, Kita-ku , Sapporo 001-0021 , Japan
| | - Hiroshi Hinou
- Faculty of Advanced Life Science and Graduate School of Life Science , Hokkaido University , N21, W11, Kita-ku , Sapporo 001-0021 , Japan
| | - Yuan Chuan Lee
- Biology Department , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science and Graduate School of Life Science , Hokkaido University , N21, W11, Kita-ku , Sapporo 001-0021 , Japan
| |
Collapse
|
8
|
Nagasaki M, Manabe Y, Minamoto N, Tanaka K, Silipo A, Molinaro A, Fukase K. Chemical Synthesis of a Complex-Type N-Glycan Containing a Core Fucose. J Org Chem 2016; 81:10600-10616. [PMID: 27775350 DOI: 10.1021/acs.joc.6b02106] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A chemical synthesis of a core fucose containing N-glycan was achieved. Asparagine was introduced at an early stage of the synthesis, and the sugar chain was convergently elongated. As for the fragment synthesis, we reinvestigated α-sialylation, β-mannosylation, and N-glycosylation to reveal that precise temperature control was essential for these glycosylations. Intermolecular hydrogen bonds involving acetamide groups were found to reduce the reactivity in glycosylations: the protection of NHAc as NAc2 dramatically improved the reactivity. The dodecasaccharide-asparagine framework was constructed via the (4 + 4) glycosylation and the (4 + 8) glycosylation using the tetrasaccharide donor and the tetrasaccharide-asparagine acceptor. An ether-type solvent enhanced the yields of these key glycosylations between large substrates. After the whole deprotection of the dodecasaccharide, the target N-glycan was obtained.
Collapse
Affiliation(s)
- Masahiro Nagasaki
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Naoya Minamoto
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.,Biofunctional Synthetic Chemistry Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Alba Silipo
- Department of Chemical Science, University of Naples Federico II , Via Cinthia 4, 80126 Napoli, Italy
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.,Department of Chemical Science, University of Naples Federico II , Via Cinthia 4, 80126 Napoli, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
9
|
Abstract
We describe the method to prepare neoglycoproteins from the conjugation of bovine serum albumin and pyridylaminated glycans. Large quantities of glycans (>1 mg) can be pyridylaminated and then converted to their 1-amino-1-deoxy derivatives by reaction with hydrogen followed by hydrazine. These pyridylaminated glycans can then be conjugated to bovine serum albumin via esterification with N-( m-maleimidobenzoyloxy)succinimide to form a neoglycoprotein, e.g., glycosylated bovine serum albumin. As a demonstration, we prepared High-mannose bovine serum albumin, which was immobilized on an activated glass slide. Then, we showed that the neoglycoprotein bind to Cy3-labeled Lens culinaris agglutinin, a mannose-specific plant lectin, as detected using an evanescent-field-activated fluorescence scanner system.
Collapse
Affiliation(s)
- Shin-Ichi Nakakita
- Department of Functional Glycomics, Life Science Research Center, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Jun Hirabayashi
- Department of Functional Glycomics, Life Science Research Center, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
10
|
Preparation of asparagine-linked monoglucosylated high-mannose-type oligosaccharide from egg yolk. Carbohydr Res 2015; 411:37-41. [DOI: 10.1016/j.carres.2015.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 11/18/2022]
|
11
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
12
|
Izumi M, Dedola S, Ito Y, Kajihara Y. Chemical Synthesis of Homogeneous Glycoproteins for the Study of Glycoprotein Quality Control System. Isr J Chem 2015. [DOI: 10.1002/ijch.201400154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Makimura Y, Kiuchi T, Izumi M, Dedola S, Ito Y, Kajihara Y. Efficient synthesis of glycopeptide-α-thioesters with a high-mannose type oligosaccharide by means of tert-Boc-solid phase peptide synthesis. Carbohydr Res 2012; 364:41-8. [PMID: 23149340 DOI: 10.1016/j.carres.2012.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/12/2012] [Accepted: 10/13/2012] [Indexed: 11/15/2022]
Abstract
High-mannose type oligosaccharides consist of nine mannose and two N-acetylglucosamine residues (Man(9)GlcNAc(2):M9) and play an important role in protein folding processes in the endoplasmic reticulum. A highly efficient preparation method of this asparaginyl-M9-oligosaccharide from hen egg yolk was established by a two-step proteolysis with commercially available proteases and subsequent purification using high performance liquid chromatography (HPLC). To avoid the hydrolysis of the desired M9-oligosaccharide during the proteolysis steps, several commercially available proteases were screened for their contamination with mannosidases. The α-amino group of the resultant H(2)N-Asn-(M9-oligosaccharide)-OH was protected with 9-fluorenylmethyloxycarbonyl (Fmoc) group for convenient separation by HPLC. The structure of Fmoc-Asn-(M9-oligosaccharide)-OH thus obtained was confirmed by ESI-MS spectrometry and several NMR experiments. Using this Fmoc-Asn-(M9-oligosaccharide)-OH, the synthesis of the M9-glycopeptide-α-thioester was demonstrated by means of tert-Boc-solid phase peptide synthesis. These tert-Boc conditions afforded the M9-glycopeptide-α-thioester in moderate yield.
Collapse
Affiliation(s)
- Yutaka Makimura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Sumiyoshi W, Nakakita SI, Miyanishi N, Yamada K, Hasehira K, Nakakita Y, Hirabayashi J. Hypersialylated type-I lactosamine-containing N-glycans found in Artiodactyla sera are potential xenoantigens. Glycobiology 2012; 22:1031-41. [PMID: 22492204 DOI: 10.1093/glycob/cws069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is increasing interest in biologics, i.e. human-originated biological pharmaceutics. Most of the protein drugs developed so far, such as immunoglobulins and erythropoietin, are secreted glycoproteins; as a result, any non-human-type glycans, such as αGal and NeuGc, derived from animal cells and sera must be removed to circumvent undesirable immunogenic reactions. In this study, we made an extensive search for potential xenoantigenic glycans among a panel of mammalian sera. As a result, sera belonging to the order Artiodactyla, i.e. bovine, lamb and goat sera, were found to contain substantial amounts of hypersialylated biantennary glycans closely associated with a type-I lactosamine structure containing a unique tetrasaccharide, Siaα2-3Galβ1-3(Siaα2-6)GlcNAc. In all three Artiodactyla sera, the most abundant structure was Siaα2-3Galβ1-3(Siaα2-6)GlcNAcβ1-2Manα1-3[Siaα2-6Galβ1-4GlcNAcβ1-2Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAc. A dually hypersialylated biantennary structure, Siaα2-3Galβ1-3(Siaα2-6)GlcNAcβ1-2Manα1-3[Siaα2-3Galβ1-3(Siaα2-6)GlcNAcβ1-2Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAc, was also abundant (10%) in bovine serum. The amount of hypersialylated glycans among total sialylated glycans was 46, 26 and 23% in bovine, lamb and goat sera, respectively. On the other hand, such structures could not be detected in the sera of other animals including human. The biological functions and the immunogenicity of the hypersialylated glycans in these animals remain to be elucidated; however, it is worth noting that glycoproteins biosynthesized from Artiodactyla cells and those contaminated with bovine serum might enhance undesirable antigenicity in human patients.
Collapse
Affiliation(s)
- Wataru Sumiyoshi
- Division of Glyco-Bioindustry, Life Science Research Center, Institute of Research Promotion, Kagawa University, 1750-1Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|