1
|
Greene ES, Ramser A, Wideman R, Bedford M, Dridi S. Dietary inclusion of phytase and stimbiotic decreases mortality and lameness in a wire ramp challenge model in broilers. Avian Pathol 2024; 53:474-491. [PMID: 38776101 DOI: 10.1080/03079457.2024.2359592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
RESEARCH HIGHLIGHTS Wire ramp model reproducibly induced lameness/BCO in broilers.Treatments did not affect growth, but phytase with stimbiotic significantly reduced BCO.Phytase increased circulating inositol, and wire flooring decreased bone inositol.
Collapse
Affiliation(s)
- Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | - Alison Ramser
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | - Robert Wideman
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | | | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| |
Collapse
|
2
|
Hu L, Zhang S, Chai S, Lyu Y, Wang S, Feng Z. Discovery of two bifunctional/multifunctional cellulases by functional metagenomics. Enzyme Microb Technol 2023; 169:110288. [PMID: 37467538 DOI: 10.1016/j.enzmictec.2023.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Cellulases are widely used in industry, and the usage in bioconversion of biofuels makes cellulases more valuable. In this study, two tandem genes that encoded cellulases ZF994-1 and ZF994-2, respectively, were identified on a cosmid from a soil metagenomic library. Phylogenetic analysis indicated that ZF994-1 and ZF994-2 belonged to glycoside hydrolase family 12 (GH12), and GH3, respectively. Based on the substrate specificity analysis, the recombinant ZF994-1 exhibited weak endoglucanase activity, moderate β-1,3-glucanase and β-1,4-mannanase activities, and strong β-glucosidase activity, while the recombinant ZF994-2 exhibited moderate endoglucanase activity and strong β-glucosidase activity. More than 45% β-glucosidase activity of the recombinant ZF994-1 retained in the buffer containing 3 M glucose, indicating the good tolerance against glucose. The recombinant ZF994-2 showed high activity in the presence of metal ions and organic reagents, exhibiting potential industrial applications.
Collapse
Affiliation(s)
- Lingzhi Hu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shengxia Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shumao Chai
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
3
|
Morgan NK, Wallace A, Bedford MR, González-Ortiz G. Impact of fermentable fiber, xylo-oligosaccharides and xylanase on laying hen productive performance and nutrient utilization. Poult Sci 2022; 101:102210. [PMID: 36334432 PMCID: PMC9627098 DOI: 10.1016/j.psj.2022.102210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
This study evaluated the impact of feeding xylo-oligosaccharides (XOS), fermentable fiber in the form of wheat bran (WB), and xylanase (XYL) on laying hen productive performance and nutrient digestibility. The hypothesis was that the WB would provide the microbiota in the hindgut with fermentable dietary xylan, and the XOS and XYL would further upregulate xylan fermentation pathways, resulting in improved nutrient utilization. Isa Brown hens (n = 96) were obtained at 39 wk of age. They were fed 12 dietary treatments, 8 hens per treatment, for 56 d. A commercial laying hen ration was fed, and for half of the treatments 10% of this ration was directly replaced with WB. The diets were then supplemented with either 1) no supplements; 2) XOS 50 g/t; 3) XOS 2000 g/t; 4) XYL (16,000 BXU/kg); 5) XYL + XOS 50 g/t, or 6) XYL + XOS 2,000 g/t. Hen performance and egg quality were measured every 14 d. On d56, ileum digesta samples were collected for determination of starch, nonstarch polysaccharide (NSP), XOS, protein, energy, and starch digestibility. Ceca digesta samples were also collected for analysis of XOS, short chain fatty acid (SCFA), xylanase and cellulase activity and microbial counts. Feeding 2,000 g/t XOS increased ileal protein digestibility. Combined 2,000 g/t XOS and XYL increased cecal Bifidobacteria concentration. This combination also increased cecal xylanase activity in birds fed the control diet. Cecal cellulase activity was improved by feeding WB, XYL, and 2,000 g/t XOS. XYL increased cecal lactate production. Feeding 2,000 g/t XOS with WB increased insoluble NSP degradability and shell breaking strength at d56. In summary, supplementing laying hen diets with fermentable fiber, XYL and XOS increases utilization of dietary xylan, improving nutrient utilization, performance, and gastrointestinal health.
Collapse
Affiliation(s)
- N K Morgan
- University of New England, School of Environmental and Rural Science, Armidale, New South Wales, 2351, Australia; Curtin University, School of Molecular and Life Sciences, Bentley, Western Australia, 6152, Australia.
| | - A Wallace
- University of New England, School of Environmental and Rural Science, Armidale, New South Wales, 2351, Australia
| | - M R Bedford
- AB Vista, Woodstock Court, Blenheim Road, Marlborough Business Park, Marlborough, Wiltshire, United Kingdom
| | - G González-Ortiz
- AB Vista, Woodstock Court, Blenheim Road, Marlborough Business Park, Marlborough, Wiltshire, United Kingdom
| |
Collapse
|
4
|
Morgan NK, Wallace A, Bedford MR. Improving sorghum digestion in broilers by targeting fermentation of xylan. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:198-206. [PMID: 35785249 PMCID: PMC9207292 DOI: 10.1016/j.aninu.2022.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
This study was to examine if it is possible to accelerate sorghum digestion in broiler chickens by targeting fermentation of the xylan. Cobb 500 broilers (n = 960, 80 birds per treatment) were fed 12 sorghum-soybean meal-based dietary treatments fed as 3 phases (starter d 0 to 12, grower d 13 to 23, finisher d 24 to 35), with 8 replicate pens of 10 birds per treatment. For half of the treatments (n = 6), 10% of the sorghum in the diet was directly replaced with 10% wheat bran, as a source of fermentable fibre. The diets were supplemented with either 0, 50 or 2,000 mg/kg xylo-oligosaccharides (XOS), with or without xylanase application. Body weight gain (BWG), feed intake (FI) and feed conversion corrected for mortality (cFCR) was determined at d 0 to 35, and male and female body weight were measured on d 35. On d 35, ileum and caeca samples were collected from 2 birds per pen, for determination of caecal cellulase and xylanase activity, microbiota composition and short chain fatty acid (SCFA) concentration, and ileal XOS concentration. Supplementation with 2,000 mg/kg XOS caused increased BWG at d 0 to 35 (P = 0.007) and enhanced caecal propionic, valeric and succinic acid concentration (P < 0.05). Wheat bran increased FI (P = 0.018) and BWG (P = 0.016), as well as caecal Bifidobacteria concentration (P < 0.001). Ileal XOS concentration was greatest when feeding combined wheat bran, 2,000 mg/kg XOS, and xylanase, resulting in increased caecal total SCFA, acetic acid and butyric acid concentration, and xylanase and cellulase activity (P < 0.05). Results from this study present that feed efficiency in birds fed sorghum-based diets is improved as a consequence of supplementing with fermentable fibre, xylanase and XOS.
Collapse
Affiliation(s)
- Natalie K. Morgan
- University of New England, School of Environmental and Rural Science, Armidale, New South Wales, Australia
- Curtin University, Kent Street, Bentley, Western Australia, Australia
| | - Andrew Wallace
- University of New England, School of Environmental and Rural Science, Armidale, New South Wales, Australia
| | - Michael R. Bedford
- AB Vista, Woodstock Court, Blenheim Road, Marlborough Business Park, Marlborough, Wiltshire, England, United Kingdom
| |
Collapse
|
5
|
Sürmeli Y. Comparative investigation of bacterial thermoalkaliphilic GH11 xylanases at molecular phylogeny, sequence and structure level. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Morgan N, Bhuiyan MM, Hopcroft R. Non-starch polysaccharide degradation in the gastrointestinal tract of broiler chickens fed commercial-type diets supplemented with either a single dose of xylanase, a double dose of xylanase, or a cocktail of non-starch polysaccharide-degrading enzymes. Poult Sci 2022; 101:101846. [PMID: 35462208 PMCID: PMC9048112 DOI: 10.1016/j.psj.2022.101846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to examine non-starch polysaccharide (NSP) degradation in the gastrointestinal tract of chickens fed a range of commercial-type diets supplemented with a commercial dose of xylanase, a double dose of xylanase or a cocktail of NSP - degrading enzymes. Cobb 500 broilers (n = 1,080) were fed 12 dietary treatments; 4 diets with differing primary grain sources (barley, corn, sorghum, and wheat) and three different enzyme treatments (commercial recommended dose of xylanase (16,000 BXU/kg), a double dose of xylanase (32,000 BXU/kg) or an NSP-degrading enzyme cocktail (xylanase, β-glucanase, cellulase, pectinase, mannanase, galactanase, and arabinofuranosidase at recommended commercial levels). There were 108 pens, approximately 10 birds per pen, 9 replicates per dietary treatment. The diets were fed as 3 phases, starter (d 0-12), grower (d 12-23), and finisher (d 23-35). On bird age d 12, 23, and 35, performance (total pen body weight, feed intake, and feed conversion ratio corrected for mortality [cFCR]), litter and excreta dry matter content, and ileal and total tract soluble and insoluble NSP degradability and free oligosaccharide digestibility was determined. On d 35, the quantity of NSP in the gizzard, jejunum, ileum and excreta was determined. Results from this study showed that the double xylanase dose and NSP-ase cocktail had positive impacts on starter phase performance in birds fed the corn- and wheat-based diets. In the grower phase in birds fed the barley-based diet, these enzyme treatments improved cFCR and increased litter dry matter content. The NSP-ase cocktail had a negative impact on finisher phase cFCR in birds fed the sorghum-based diet. The double xylanase dose induced a positive impact on NSP degradability and free oligosaccharide digestibility. In conclusion, there appears to be advantages to feeding broilers a double xylanase dose, but lack of consistency when using an NSP-ase cocktail containing many enzymes.
Collapse
Affiliation(s)
- N Morgan
- Curtin University, School of Molecular and Life Sciences, Bentley, Western Australia 6102, Australia; University of New England, School of Rural and Environmental Sciences, Armidale, New South Wales 2350, Australia.
| | - M M Bhuiyan
- University of New England, School of Rural and Environmental Sciences, Armidale, New South Wales 2350, Australia
| | - R Hopcroft
- Inghams Enterprises Pty Ltd, North Ryde, New South Wales 1670, Australia
| |
Collapse
|
7
|
Jahan AA, González Ortiz G, Moss AF, Bhuiyan MM, Morgan NK. Role of supplemental oligosaccharides in poultry diets. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2067805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- A. A. Jahan
- Department of Animal Science, University of New England, School of Environmental and Rural Science, Armidale, NSW, Australia
| | | | - A. F. Moss
- Department of Animal Science, University of New England, School of Environmental and Rural Science, Armidale, NSW, Australia
| | - M. M. Bhuiyan
- Department of Animal Science, University of New England, School of Environmental and Rural Science, Armidale, NSW, Australia
| | - N. K. Morgan
- Department of Animal Science, University of New England, School of Environmental and Rural Science, Armidale, NSW, Australia
- Department of Food Science and Agriculture, Curtin University, School of Molecular and Life Sciences, Bentley, Western Australia, Australia
| |
Collapse
|
8
|
Min K, Kim H, Park HJ, Lee S, Jung YJ, Yoon JH, Lee JS, Park K, Yoo YJ, Joo JC. Improving the catalytic performance of xylanase from Bacillus circulans through structure-based rational design. BIORESOURCE TECHNOLOGY 2021; 340:125737. [PMID: 34426235 DOI: 10.1016/j.biortech.2021.125737] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Endo-1,4-β-xylanase is one of the most important enzymes employed in biorefineries for obtaining fermentable sugars from hemicellulosic components. Herein, we aimed to improve the catalytic performance of Bacillus circulans xylanase (Bcx) using a structure-guided rational design. A systematic analysis of flexible motions revealed that the R49 component of Bcx (i) constrains the global conformational changes essential for substrate binding and (ii) is involved in modulating flexible motion. Site-saturated mutagenesis of the R49 residue led to the engineering of the active mutants with the trade-off between flexibility and rigidity. The most active mutant R49N improved the catalytic performance, including its catalytic efficiency (7.51-fold), conformational stability (0.7 °C improvement), and production of xylose oligomers (2.18-fold higher xylobiose and 1.72-fold higher xylotriose). The results discussed herein can be applied to enhance the catalytic performance of industrially important enzymes by controlling flexibility.
Collapse
Affiliation(s)
- Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Hoyong Kim
- Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology, Ulsan 44429, Republic of Korea
| | - Hyun June Park
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Siseon Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Ye Jean Jung
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biological and Chemical Engineering, Hongik University, Sejong Ro 2639, Jochiwon, Sejong City, Republic of Korea
| | - Ji Hyun Yoon
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Kyoungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong Ro 2639, Jochiwon, Sejong City, Republic of Korea
| | - Young Je Yoo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Chan Joo
- Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology, Ulsan 44429, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
9
|
Duong TBH, Ketbot P, Phitsuwan P, Waeonukul R, Tachaapaikoon C, Kosugi A, Ratanakhanokchai K, Pason P. Bioconversion of Untreated Corn Hull into L-Malic Acid by Trifunctional Xylanolytic Enzyme from Paenibacillus curdlanolyticus B-6 and Acetobacter tropicalis H-1. J Microbiol Biotechnol 2021; 31:1262-1271. [PMID: 34261852 PMCID: PMC9705945 DOI: 10.4014/jmb.2105.05044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
L-Malic acid (L-MA) is widely used in food and non-food products. However, few microorganisms have been able to efficiently produce L-MA from xylose derived from lignocellulosic biomass (LB). The objective of this work is to convert LB into L-MA with the concept of a bioeconomy and environmentally friendly process. The unique trifunctional xylanolytic enzyme, PcAxy43A from Paenibacillus curdlanolyticus B-6, effectively hydrolyzed xylan in untreated LB, especially corn hull to xylose, in one step. Furthermore, the newly isolated, Acetobacter tropicalis strain H1 was able to convert high concentrations of xylose derived from corn hull into L-MA as the main product, which can be easily purified. The strain H1 successfully produced a high L-MA titer of 77.09 g/l, with a yield of 0.77 g/g and a productivity of 0.64 g/l/h from the xylose derived from corn hull. The process presented in this research is an efficient, low-cost and environmentally friendly biological process for the green production of L-MA from LB.
Collapse
Affiliation(s)
- Thi Bich Huong Duong
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Prattana Ketbot
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Paripok Phitsuwan
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Patthra Pason
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand,Corresponding author Phone: +662-470-7765 Fax: +662-470-7760 E-mail:
| |
Collapse
|
10
|
Khangwal I, Skariyachan S, Uttarkar A, Muddebihalkar AG, Niranjan V, Shukla P. Understanding the Xylooligosaccharides Utilization Mechanism of Lactobacillus brevis and Bifidobacterium adolescentis: Proteins Involved and Their Conformational Stabilities for Effectual Binding. Mol Biotechnol 2021; 64:75-89. [PMID: 34542815 DOI: 10.1007/s12033-021-00392-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022]
Abstract
Xylooligosaccharides having various degrees of polymerization such as xylobiose, xylotriose, and xylotetraose positively affect human health by interacting with gut proteins. The present study aimed to identify proteins present in gut microflora, such as xylosidase, xylulokinase, etc., with the help of retrieved whole-genome annotations and find out the mechanistic interactions of those with the above substrates. The 3D structures of proteins, namely Endo-1,4-beta-xylanase B (XynB) from Lactobacillus brevis and beta-D-xylosidase (Xyl3) from Bifidobacterium adolescentis, were computationally predicted and validated with the help of various bioinformatics tools. Molecular docking studies identified the effectual binding of these proteins to the xylooligosaccharides, and the stabilities of the best-docked complexes were analyzed by molecular dynamic simulation. The present study demonstrated that XynB and Xyl3 showed better effectual binding toward Xylobiose with the binding energies of - 5.96 kcal/mol and - 4.2 kcal/mol, respectively. The interactions were stabilized by several hydrogen bonding having desolvation energy (- 6.59 and - 7.91). The conformational stabilities of the docked complexes were observed in the four selected complexes of XynB-xylotriose, XynB-xylotetraose, Xyl3-xylobiose, and Xyn3-xylotriose by MD simulations. This study showed that the interactions of these four complexes are stable, which means they have complex metabolic activities among each other. Extending these studies of understanding, the interaction between specific probiotics enzymes and their ligands can explore the detailed design of synbiotics in the future.
Collapse
Affiliation(s)
- Ishu Khangwal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, Kerala, India
| | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka, India
| | | | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
11
|
Morgan NK, Gomes GA, Kim JC. Comparing the efficacy of stimbiotic and a combination of xylanase and beta-glucanase, in broilers fed wheat-barley based diets with high or low AME. Poult Sci 2021; 100:101383. [PMID: 34438325 PMCID: PMC8383100 DOI: 10.1016/j.psj.2021.101383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022] Open
Abstract
A stimbiotic is defined as a product that stimulates a fiber-degrading microbiome to increase fiber fermentability. The aim of this study was to examine if it is more advantageous to feed a stimbiotic (xylanase + xylo-oligosaccharides [STB]) or a combination of xylanase and beta-glucanase (Xyl + BG) to broilers fed wheat-barley based diets with differing AME levels. Cobb 500 broilers (n = 480, 80 birds per treatment) were fed 6 dietary treatments in a 2 × 3 factorial arrangement; 2 AME levels, ‘High’ or ‘Low’, which differed by 100 kcal ME/kg, and 3 additive supplementations, with no supplemental additives, STB or Xyl + BG. Diets were fed as 3 phases, starter (d 0–14), grower (d 14–21) and finisher (d 21–35). On bird age d 14, 21 and 35, total pen body weight and feed intake were determined, and feed conversion ratio corrected for mortality (cFCR) was calculated. On d 21 and d 35 ileal viscosity and beta-glucan content and caecal SCFA concentration were determined. Additive suplementation had no impact on cFCR in birds fed the low AME diet, but in birds fed the high AME diet the cFCR value was reduced in the presence of the additives (P = 0.001 and P = 0.015, at d 14–21 and d 21–35, respectively). At d 21, cecal SCFA concentration was consistently higher (P = 0.015), and ileal beta-glucan level lower (P = 0.002), in birds fed the diet supplemented with STB compared to those without additives. At d 35, ileal viscosity was lower in birds fed STB compared to those fed the diet without supplementation of additives, irrespective of diet AME level (P = 0.017). These results suggest that both STB and Xyl + BG ameliorate the antinutritive effects of the non-starch polysaccharides (NSP) present in wheat-barley based diets, resulting in improved bird performance. However, supplementation with STB induces a comparatively greater positive effect on NSP hydrolysis and SCFA production.
Collapse
Affiliation(s)
- N K Morgan
- Department of Animal Science, University of New England, Armidale, NSW 2350, Australia.
| | - G A Gomes
- AB Vista, Marlborough, Wiltshire SN48 4AN, UK
| | - J C Kim
- AB Vista, Marlborough, Wiltshire SN48 4AN, UK
| |
Collapse
|
12
|
Cheawchanlertfa P, Tongsuk P, Sutheeworapong S, Waeonukul R, Pason P, Poomputsa K, Ratanakhanokchai K, Kosugi A, Tachaapaikoon C. A novel amylolytic/xylanolytic/cellulolytic multienzyme complex from Clostridium manihotivorum that hydrolyzes polysaccharides in cassava pulp. Appl Microbiol Biotechnol 2021; 105:6719-6733. [PMID: 34436648 DOI: 10.1007/s00253-021-11521-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022]
Abstract
Some anaerobic bacteria, particularly Clostridium species, produce extracellular cellulolytic and xylanolytic enzymes as multienzyme complexes (MECs). However, an amylolytic/xylanolytic/cellulolytic multienzyme complex (AXC-MEC) from anaerobic bacteria is rarely found. In this work, the glycoprotein AXC-MEC, composed of subunits of amylolytic, xylanolytic, and cellulolytic enzymes, was isolated from crude extracellular enzyme of the mesophilic anaerobic bacterium Clostridium manihotivorum CT4, grown on cassava pulp, using a milled cassava pulp column and Sephacryl S-500 gel filtration chromatography. The isolated AXC-MEC showed a single band upon native-polyacrylamide gel electrophoresis (native-PAGE). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed at least eight protein bands of the multienzyme complex which predominantly exhibited amylolytic enzyme activity, followed by xylanolytic and cellulolytic enzyme activities. The AXC-MEC is highly capable of degrading starch and non-starch polysaccharides present in cassava pulp into glucose and oligosaccharides, without conventional pretreatment. Base on the genomic analysis of C. manihotivorum CT4, we found no evidence of the known structural components of the well-known multienzyme complexes from Clostridium species, cellulosomes such as scaffoldin, cohesin, and dockerin, indicating that AXC-MEC from strain CT4 exhibit a different manner of assembly from the cellulosomes. These results suggest that AXC-MEC from C. manihotivorum CT4 is a new MEC capable of hydrolyzing cassava pulp into value-added products, which will benefit the starch industry. KEY POINTS: • Glycoprotein AXC-MEC was first reported in Clostridium manihotivorum. • Unlike cellulosomes, AXC-MEC consists of amylase, xylanase, and cellulase. • Glucose and oligosaccharides were hydrolysis products from cassava pulp by AXC-MEC.
Collapse
Affiliation(s)
- Pattsarun Cheawchanlertfa
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Pornpimon Tongsuk
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Sawannee Sutheeworapong
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rattiya Waeonukul
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Patthra Pason
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Kanokwan Poomputsa
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Khanok Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Chakrit Tachaapaikoon
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand. .,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
13
|
Abedi E, Fatemi F, Sefidbakht Y, Siadat SER. Development and characterization of a thermostable GH11/GH10 xylan degrading chimeric enzyme. Enzyme Microb Technol 2021; 149:109854. [PMID: 34311891 DOI: 10.1016/j.enzmictec.2021.109854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
Xylanases are categorized into different family groups, two of which are glycoside hydrolases 10 (GH10) and 11 (GH11) families. These well-characterized xylanases demonstrate different modes of action in hydrolysis of xylans. Imitating certain types of microorganisms to produce bifunctional enzymes such as engineered xylanases has gained considerable attention among researchers. In this study, a recombinant chimeric enzyme (X11-10) was designed by fusing two thermostable xylanases through a peptide linker. The recombinant parental enzymes, xylanase 10 from fungus Bispora sp. MEY-1 (X10) and xylanase 11 from bacterium Thermobacillus xylanilyticus (X11), and their chimera were successfully expressed in Pichia pastoris (P. pastoris), purified, and characterized. Being active over a wide pH range, X11-10 chimera showed higher thermal stability, possessed a lower Km, and a higher catalytic efficiency (kcat/Km) in comparison to the parental enzymes. Also, molecular dynamics simulation (MDS) of X11-10 revealed that its active site residues were free to interact with substrate. This novel chimeric xylanase may have potential applications in different industrial processes since it can substitute two separate enzymes and therefore minimize the production costs.
Collapse
Affiliation(s)
- Ehsan Abedi
- Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran
| | - Fataneh Fatemi
- Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran.
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran
| | - Seyed Ehsan Ranaei Siadat
- Sobhan Recombinant Protein, No. 22, 2nd Noavari St, Pardis Technology Park, 20th Km of Damavand Road, Tehran, Iran.
| |
Collapse
|
14
|
Fatmawati NV, Ketbot P, Phitsuwan P, Waeonukul R, Tachaapaikoon C, Kosugi A, Ratanakhanokchai K, Pason P. Efficient biological pretreatment and bioconversion of corn cob by the sequential application of a Bacillus firmus K-1 cellulase-free xylanolytic enzyme and commercial cellulases. Appl Microbiol Biotechnol 2021; 105:4589-4598. [PMID: 34027563 DOI: 10.1007/s00253-021-11308-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/12/2021] [Accepted: 04/19/2021] [Indexed: 01/07/2023]
Abstract
We used agricultural residue, corn cob, with biorefinery and bioeconomy concepts. At short-time cultivation in corn cob (12 h), Bacillus firmus K-1 produced cellulase-free xylanolytic enzyme, with xylooligosaccharides (XOSs), X5 and X6, as the main products, which can be used in a variety of applications. The xylanolytic enzyme produced from B. firmus K-1 effectively degraded xylan in corn cob, which was examined by chemical composition, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). After cultivation, the xylan contained in the corn cob residue was decreased (as biological pretreatment), causing morphological and structural changes, including creating porosity and increasing the surface area and the exposure of cellulose of pretreated corn cob. These results lead to an improvement of cellulose access by cellulases. Commercially available cellulases, Accellerase® 1500 and Cellic® CTec2, yielded significantly higher glucose concentrations from pretreated corn cob compared to untreated corn cob. After saccharification, the lignin-rich corn cob residue can be used as a raw material for other purposes. Moreover, the B. firmus cells, with a low risk to human health, can be used in some applications. This study presents an efficient method for producing high-value-added products from agricultural residue (corn cob) through biological processes which are environmentally friendly and economically viable. KEY POINTS: • High-value-added products were efficiently produced from corn cob by B. firmus K-1. • After biological pretreatment by B. firmus K-1, cellulase can better reach cellulose. • XOSs and cellulose-derived glucose were the main products from corn cob.
Collapse
Affiliation(s)
- Niendy Virnanda Fatmawati
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Prattana Ketbot
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paripok Phitsuwan
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rattiya Waeonukul
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chakrit Tachaapaikoon
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686, Japan
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Patthra Pason
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
15
|
Morgan N, Bhuiyan MM, Nguyen TNA, Middlebrook T, Hopcroft R. Dietary soluble non-starch polysaccharide level and composition influences grower and finisher phase performance, excreta moisture content and total tract nutrient digestibility in broilers. Br Poult Sci 2021; 62:759-770. [PMID: 33896287 DOI: 10.1080/00071668.2021.1919995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. The aim of this study was to examine the impact of dietary soluble non-starch polysaccharide (sNSP) level and composition on grower and finisher phase performance, total tract nutrient digestibility and excreta moisture content in broiler chickens.2. Cobb 500 broilers (n = 1080) were fed 12 dietary treatments; four diets with differing primary grain sources (barley, corn, sorghum and wheat) and three different sNSP levels (low, medium and high). Diets were formulated to have similar protein and energy levels but differing sNSP levels, induced by manipulating the quantity of the ingredients in the diet. The diets were fed in three phases, starter (d 0-12), grower (d 12-23) and finisher (d 23-31).3. For birds aged d 23 and 31, total pen body weight and feed intake were determined, and fresh excreta and litter samples were collected per pen. Dry matter (DM) content was measured in the excreta and litter samples. Total tract DM digestibility, apparent metabolisable energy corrected to nitrogen (AMEn), and soluble and insoluble NSP and free oligosaccharide degradability were evaluated.4. In birds fed the sorghum- and corn-based diets, feeding high sNSP resulted in a lower cFCR at d 0-23 compared to low sNSP (P = 0.004 and P = 0.044, respectively). In birds fed the corn-based diet, feeding low sNSP resulted in the lowest litter DM but highest DM digestibility at d 23 (P = 0.045 and P < 0.001) and d 31 (P = 0.022 and P = 0.008). For all diets, degradability of sNSP was higher and insoluble NSP was lower when feeding low compared to high sNSP (P < 0.001). In birds fed the barley- and sorghum-based diets, AMEn was lower when feeding the low compared to high sNSP level (P < 0.001 and P = 0.016, respectively).6. Results from this study showed that level of dietary sNSP impacts broiler productive performance and nutrient utilisation.
Collapse
Affiliation(s)
- N Morgan
- Department of Animal Science, School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - M M Bhuiyan
- Department of Animal Science, School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - T N A Nguyen
- Department of Animal Science, School of Environmental and Rural Science, University of New England, Armidale, Australia
| | | | - R Hopcroft
- Inghams Enterprises Pty Ltd, North Ryde, Australia
| |
Collapse
|
16
|
Ngenyoung A, Muhammad A, Rattanarojpong T, Sutthibutpong T, Khunrae P. Effect of N-terminal modification on the mode of action between the Xyn11A and Xylotetraose. Int J Biol Macromol 2020; 170:240-247. [PMID: 33359611 DOI: 10.1016/j.ijbiomac.2020.12.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to gain an insight into the effects of mutation-induced binding pocket tilting of the Xyn11A xylanase from Bacillus firmus K-1 in producing a unique hydrolysis characteristic. In this study, the wildtype Xyn11A and its K40L mutant were compared for their hydrolysis patterns on beechwood xylan and xylooligosaccharides of sizes 2 to 6. According to our thin-layer chromatography experiment, the K40L mutant produced a larger amount of xylotetraose leftover than the wildtype. Kinetic determination of the WT and K40L mutant suggested that the higher X4 leftover on TLC was reflected in the decreasing catalytic efficiency (kcat/Km) between enzyme and X4. The mechanisms underlying this efficiency loss were examined through atomistic molecular dynamics (MD) simulations. The MD trajectory analysis showed that the mutation-induced binding pocket tilting resulted in an additional hydrophobic contact between the reducing end of X4 and Trp128. Meanwhile, the interactions between the non-reducing end and the Arg112 residue near the active site became lost, which could decrease the catalytic efficiency. This work suggested that the protein engineering to fine-tune the hydrolysis pattern for some desired xylooligosaccharide products was possible.
Collapse
Affiliation(s)
- Apichet Ngenyoung
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Auwal Muhammad
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand; Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand; Department of Physics, Faculty of Science, Kano University of Science and Technology (KUST), Wudil, Nigeria
| | - Triwit Rattanarojpong
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand; Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand.
| |
Collapse
|
17
|
Cheawchanlertfa P, Sutheeworapong S, Jenjaroenpun P, Wongsurawat T, Nookaew I, Cheevadhanarak S, Kosugi A, Pason P, Waeonukul R, Ratanakhanokchai K, Tachaapaikoon C. Clostridium manihotivorum sp. nov., a novel mesophilic anaerobic bacterium that produces cassava pulp-degrading enzymes. PeerJ 2020; 8:e10343. [PMID: 33240652 PMCID: PMC7676355 DOI: 10.7717/peerj.10343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/20/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Cassava pulp is a promising starch-based biomasses, which consists of residual starch granules entrapped in plant cell wall containing non-starch polysaccharides, cellulose and hemicellulose. Strain CT4T, a novel mesophilic anaerobic bacterium isolated from soil collected from a cassava pulp landfill, has a strong ability to degrade polysaccharides in cassava pulp. This study explored a rarely described species within the genus Clostridium that possessed a group of cassava pulp-degrading enzymes. METHODS A novel mesophilic anaerobic bacterium, the strain CT4T, was identified based on phylogenetic, genomic, phenotypic and chemotaxonomic analysis. The complete genome of the strain CT4T was obtained following whole-genome sequencing, assembly and annotation using both Illumina and Oxford Nanopore Technology (ONT) platforms. RESULTS Analysis based on the 16S rRNA gene sequence indicated that strain CT4T is a species of genus Clostridium. Analysis of the whole-genome average amino acid identity (AAI) of strain CT4T and the other 665 closely related species of the genus Clostridium revealed a separated strain CT4T from the others. The results revealed that the genome consisted of a 6.3 Mb circular chromosome with 5,664 protein-coding sequences. Genome analysis result of strain CT4T revealed that it contained a set of genes encoding amylolytic-, hemicellulolytic-, cellulolytic- and pectinolytic enzymes. A comparative genomic analysis of strain CT4T with closely related species with available genomic information, C. amylolyticum SW408T, showed that strain CT4T contained more genes encoding cassava pulp-degrading enzymes, which comprised a complex mixture of amylolytic-, hemicellulolytic-, cellulolytic- and pectinolytic enzymes. This work presents the potential for saccharification of strain CT4T in the utilization of cassava pulp. Based on phylogenetic, genomic, phenotypic and chemotaxonomic data, we propose a novel species for which the name Clostridium manihotivorum sp. nov. is suggested, with the type strain CT4T (= TBRC 11758T = NBRC 114534T).
Collapse
Affiliation(s)
- Pattsarun Cheawchanlertfa
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Sawannee Sutheeworapong
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Supapon Cheevadhanarak
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Ibaraki, Japan
| | - Patthra Pason
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Rattiya Waeonukul
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Khanok Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Chakrit Tachaapaikoon
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
18
|
Dale T, Hannay I, Bedford MR, Tucker GA, Brameld JM, Parr T. The effects of exogenous xylanase supplementation on the in vivo generation of xylooligosaccharides and monosaccharides in broilers fed a wheat-based diet. Br Poult Sci 2020; 61:471-481. [PMID: 32683884 DOI: 10.1080/00071668.2020.1751805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. This study quantified xylanase-induced changes in soluble monosaccharides, xylooligosaccharides (XOS) and volatile fatty acid (VFA) contents of the different sections of the gastrointestinal tract (GIT) and whether these were related to altered bird performance. 2. An in vitro digestion of the wheat-based diet was carried out with the xylanase (Econase XT at 16,000BXU/kg diet) to compare the in vitro and in vivo generation of these XOS and monosaccharides. For the in vivo study, 80 male Ross 508 b roiler chicks were split into two groups fed a wheat-based diet with or without Econase XT (16,000BXU/kg diet) for 21 days. 3. There were no effects of Econase XT inclusion on growth performance characteristics, likely a result of the high-quality wheat diet, the corresponding high performance of the control group (FCR average of 1.45 in controls) and the relatively young age of the birds (from four to 26 days of age). 4. Econase XT supplementation increased the xylotetraose (X4) content in the colon (P = 0.046, enzyme x GIT section interaction) and the xylose contents in the colon and caeca (P < 0.001, enzyme x GIT section interaction). 5. The trend for increased acetate production in the caeca of Econase XT treated birds (P = 0.062) suggested that the XOS generated were subsequently fermented in the caeca, potentially impacting upon the types of microbiota present. 6. The present study suggested that wheat arabinoxylan degradation was enhanced by xylanase supplementation, which may have increased the production of beneficial volatile fatty acids (VFA) in the caeca, and thereby potentially modulated the caecal microbiome, but without affecting bird performance at this early age.
Collapse
Affiliation(s)
- T Dale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| | - I Hannay
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| | | | - G A Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| | - J M Brameld
- School of Biosciences, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| | - T Parr
- School of Biosciences, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| |
Collapse
|
19
|
Limsakul P, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, Poomputsa K, Kosugi A, Sakka M, Sakka K, Ratanakhanokchai K. A novel AA10 from Paenibacillus curdlanolyticus and its synergistic action on crystalline and complex polysaccharides. Appl Microbiol Biotechnol 2020; 104:7533-7550. [PMID: 32651597 DOI: 10.1007/s00253-020-10758-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) play an important role in the degradation of complex polysaccharides in lignocellulosic biomass. In the present study, we characterized a modular LPMO (PcAA10A), consisting of a family 10 auxiliary activity of LPMO (AA10) catalytic domain, and non-catalytic domains including a family 5 carbohydrate-binding module, two fibronectin type-3 domains, and a family 3 carbohydrate-binding module from Paenibacillus curdlanolyticus B-6, which was expressed in a recombinant Escherichia coli. Comparison of activities between full-length PcAA10A and the catalytic domain polypeptide (PcAA10A_CD) indicates that the non-catalytic domains are important for the deconstruction of crystalline cellulose and complex polysaccharides contained in untreated lignocellulosic biomass. Interestingly, PcAA10A_CD acted not only on cellulose and chitin, but also on xylan, mannan, and xylan and cellulose contained in lignocellulosic biomass, which has not been reported for the AA10 family. Mutation of the key residues, Trp51 located at subsite - 2 and Phe171 located at subsite +2, in the substrate-binding site of PcAA10A_CD revealed that these residues are substantially involved in broad substrate specificity toward cellulose, xylan, and mannan, albeit with a low effect toward chitin. Furthermore, PcAA10A had a boosting effect on untreated corn hull degradation by P. curdlanolyticus B-6 endo-xylanase Xyn10D and Clostridium thermocellum endo-glucanase Cel9A. These results suggest that PcAA10A is a unique LPMO capable of cleaving and enhancing lignocellulosic biomass degradation, making it a good candidate for biotechnological applications. KEY POINTS: • PcAA10A is a novel modular LPMO family 10 from Paenibacillus curdlanolyticus. • PcAA10A showed broad substrate specificity on β-1,4 glycosidic linkage substrates. • Non-catalytic domains are important for degrading complex polysaccharides. • PcAA10A is a unique LPMO capable of enhancing lignocellulosic biomass degradation.
Collapse
Affiliation(s)
- Puangpen Limsakul
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paripok Phitsuwan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rattiya Waeonukul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Patthra Pason
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chakrit Tachaapaikoon
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Kanokwan Poomputsa
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686, Japan
| | - Makiko Sakka
- Graduated School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
| | - Kazuo Sakka
- Graduated School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan.
| | - Khanok Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
20
|
Morgan NK, Keerqin C, Wallace A, Wu SB, Choct M. Effect of arabinoxylo-oligosaccharides and arabinoxylans on net energy and nutrient utilization in broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2019; 5:56-62. [PMID: 30899810 PMCID: PMC6407086 DOI: 10.1016/j.aninu.2018.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 01/23/2023]
Abstract
Arabinoxylo-oligosaccharides (AXOS) are hydrolytic degradation products of arabinoxylans (AX) that can be fermented by the gut microbiota, thus potentially displaying prebiotic properties. This study examined the effects of AX and AXOS on net energy (NE) and nutrient utilization in broilers. Ross 308 broilers (n = 90, 30 birds per treatment) were fed wheat-soybean diets supplemented with pure AX, AXOS produced by exposing the AX to xylanase in vitro (AXOS), or AX with xylanase (AX + E) from d 10 to 21. Performance parameters were measured from d 10 to 21. On d 15, 10 birds per treatment were allocated to closed-circuit net energy chambers to assess the impact of AX and AXOS on dietary energy utilization, through assessment of both metabolisable energy (ME) and NE. Ileal and caecal digesta samples were collected on d 21 to determine the effect of AX and AXOS on ileal and total tract dry matter digestibility, ileal digestible energy, digesta pH, short chain fatty acids (SCFA) and microbiota concentration. Feed conversion ratio was numerically the lowest in birds fed the diet supplemented with AXOS, which is 1.26 compared to 1.37 and 1.30 for AX and AX + E, respectively. Ileal dry matter digestibility was higher in birds fed AXOS than those fed AX (P = 0.047). Ileal digestible energy and total tract dry matter digestibility were higher in birds fed AXOS than those fed AX or AX + E (P = 0.004 and P = 0.001, respectively). Birds fed AXOS had higher ME intake (P = 0.049) and nitrogen retention (P = 0.001) and a strong trend of higher NE (P = 0.056), NE intake (P = 0.057) and retained energy (P = 0.054) compared to those fed AX. Ileal total SCFA, lactic and formic acid concentrations were higher in birds fed AXOS than those fed AX (P = 0.011, P = 0.012 and P = 0.023, respectively). Birds fed AXOS or AX + E had higher caecal total SCFA, acetic, butyric and isovaleric acid concentrations compared to those fed AX (P = 0.001, P = 0.004, P = 0.016 and P = 0.008, respectively), and caecal propionic acid concentration was higher in birds fed AX + E than those fed AX (P = 0.050). Ileal and caecal microbiota concentrations were numerically higher and pH was lower in birds fed AXOS and AX + E than those fed AX. Results from this study indicate that feeding AXOS directly is more efficient than AXOS generation in the gastrointestinal tract, and suggest that AXOS has a potential to be an efficacious prebiotic in broiler diets.
Collapse
Affiliation(s)
- Natalie K. Morgan
- University of New England, School of Environmental and Rural Science, Armidale, NSW, 2351, Australia
| | - Chake Keerqin
- University of New England, School of Environmental and Rural Science, Armidale, NSW, 2351, Australia
| | - Andrew Wallace
- University of New England, School of Science & Technology, Armidale, NSW, 2351, Australia
| | - Shu-Biao Wu
- University of New England, School of Environmental and Rural Science, Armidale, NSW, 2351, Australia
| | - Mingan Choct
- University of New England, School of Environmental and Rural Science, Armidale, NSW, 2351, Australia
| |
Collapse
|
21
|
Xylanase from Aspergillus tamarii shows different kinetic parameters and substrate specificity in the presence of ferulic acid. Enzyme Microb Technol 2019; 120:16-22. [DOI: 10.1016/j.enzmictec.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 11/20/2022]
|
22
|
Kumar V, Singh PK, Shukla P. Thermostability and Substrate Specificity of GH-11 Xylanase from Thermomyces lanuginosus VAPS24. Indian J Microbiol 2018; 58:515-519. [PMID: 30262962 PMCID: PMC6141391 DOI: 10.1007/s12088-018-0751-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022] Open
Abstract
The three dimensional structure (3D structure) of GH-11 xylanase from Thermomyces lanuginosus was obtained through homology modeling. To study the enzyme interaction with an end product of enzyme catalysis, the xylanase two sugar molecules xylose and xylobiose has been docked into the active site of GH-11 xylanase through molecular docking. Based on the free binding energy and Inhibition constant, concluded xylose makes more stable complex than xylobiose. Further, the molecular dynamic simulation studies were carried out at different temperature, i.e. 323, 333, 343 and 353 K (i.e. 50, 60, 70 and 80 °C). It has been observed that there was minor structural modification in 3D-structure of xylanase at 323, 333, and 343 K. But the helix and sheets moved out of the initial structure when simulation carried out at during 353 K (80 °C).
Collapse
Affiliation(s)
- Vishal Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Puneet Kumar Singh
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
23
|
Martins MP, Ventorim RZ, Coura RR, Maitan-Alfenas GP, Alfenas RF, Guimarães VM. The β-xylosidase from Ceratocystis fimbriata RM35 improves the saccharification of sugarcane bagasse. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Morgan NK, Wallace A, Bedford MR, Choct M. Efficiency of xylanases from families 10 and 11 in production of xylo -oligosaccharides from wheat arabinoxylans. Carbohydr Polym 2017; 167:290-296. [DOI: 10.1016/j.carbpol.2017.03.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/23/2017] [Accepted: 03/18/2017] [Indexed: 10/19/2022]
|
25
|
Protein homology modeling, docking, and phylogenetic analyses of an endo-1,4-β-xylanase GH11 of Colletotrichum lindemuthianum. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1291-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Engineering a family 27 carbohydrate-binding module into an Aspergillus usamii β-mannanase to perfect its enzymatic properties. J Biosci Bioeng 2017; 123:294-299. [DOI: 10.1016/j.jbiosc.2016.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/06/2016] [Accepted: 09/14/2016] [Indexed: 11/21/2022]
|
27
|
Morgan NK. Managing gut health without reliance on antimicrobials in poultry. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an17288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is well established that antimicrobials in animal feed enhance feed efficiency, promote animal growth and improve the quality of animal products. However, resistance development in bacterial populations, and hence consumer demand for products free of antimicrobial residues, has prompted efforts to develop alternatives that can replace antimicrobials without causing loss of productivity or product quality. One of the key barriers to complete withdrawal from antimicrobial use is microbial infection, for example, necrotic enteritis. There is much interest in using in-feed nutraceuticals such as prebiotics, probiotics, organic acids and plant extracts as alternatives to antimicrobials to create a healthy gastrointestinal environment and to prevent and treat enteric infections. Enzymes are generally used to alleviate anti-nutritional factors in feed, but there is growing awareness of their beneficial effects on the gastrointestinal environment, and consequently on gut health. An example of this is production of prebiotic xylo-oligosaccharides when xylanase is added to feed. This review discusses developments in alternatives to antimicrobials that can aid in managing gut health in a post-antimicrobial era, with particular reference to recent nutritional strategies.
Collapse
|
28
|
Sermsathanaswadi J, Pianwanit S, Pason P, Waeonukul R, Tachaapaikoon C, Ratanakhanokchai K, Septiningrum K, Kosugi A. The C-terminal region of xylanase domain in Xyn11A from Paenibacillus curdlanolyticus B-6 plays an important role in structural stability. Appl Microbiol Biotechnol 2014; 98:8223-33. [DOI: 10.1007/s00253-014-5748-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 02/02/2023]
|
29
|
Ghatge SS, Telke AA, Kang SH, Arulalapperumal V, Lee KW, Govindwar SP, Um Y, Oh DB, Shin HD, Kim SW. Characterization of modular bifunctional processive endoglucanase Cel5 from Hahella chejuensis KCTC 2396. Appl Microbiol Biotechnol 2013; 98:4421-35. [PMID: 24343767 DOI: 10.1007/s00253-013-5446-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 11/29/2022]
Abstract
Cel5 from marine Hahella chejuensis is composed of glycoside hydrolase family-5 (GH5) catalytic domain (CD) and two carbohydrate binding modules (CBM6-2). The enzyme was expressed in Escherichia coli and purified to homogeneity. The optimum endoglucanase and xylanase activities of recombinant Cel5 were observed at 65 °C, pH 6.5 and 55 °C, pH 5.5, respectively. It exhibited K m of 1.8 and 7.1 mg/ml for carboxymethyl cellulose and birchwood xylan, respectively. The addition of Ca(2+) greatly improved thermostability and endoglucanase activity of Cel5. The Cel5 retained 90 % of its endoglucanase activity after 24 h incubation in presence of 5 M concentration of NaCl. Recombinant Cel5 showed production of cellobiose after hydrolysis of cellulosic substrates (soluble/insoluble) and methylglucuronic acid substituted xylooligosaccharides after hydrolysis of glucuronoxylans by endo-wise cleavage. These results indicated that Cel5 as bifunctional enzyme having both processive endoglucanase and xylanase activities. The multidomain structure of Cel5 is clearly distinguished from the GH5 bifunctional glycoside hydrolases characterized to date, which are single domain enzymes. Sequence analysis and homology modeling suggested presence of two conserved binding sites with different substrate specificities in CBM6-2 and a single catalytic site in CD. Residues Glu132 and Glu219 were identified as key catalytic amino acids by sequence alignment and further verified by using site directed mutagenesis. CBM6-2 plays vital role in catalytic activity and thermostability of Cel5. The bifunctional activities and multiple substrate specificities of Cel5 can be utilized for efficient hydrolysis of cellulose and hemicellulose into soluble sugars.
Collapse
Affiliation(s)
- Sunil Subhash Ghatge
- Division of Applied Life Sciences (BK21), PMBBRC, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kumar L, Dutt D, Tapas S, Kumar P. Purification, bio-chemical characterization, homology modeling and active site binding mode interactions of thermo-alkali-tolerant β-1,4 endoxylanase from Coprinus cinereus LK-D-NCIM-1369. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2013. [DOI: 10.1016/j.bcab.2013.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update). EFSA J 2012. [DOI: 10.2903/j.efsa.2012.3020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
32
|
Probing the role of sigma π interaction and energetics in the catalytic efficiency of endo-1,4-β-xylanase. Appl Environ Microbiol 2012; 78:8817-21. [PMID: 23023743 DOI: 10.1128/aem.02261-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chaetomium globosum endo-1,4-β-xylanase (XylCg) is distinguished from other xylanases by its high turnover rate (1,860 s(-1)), the highest ever reported for fungal xylanases. One conserved amino acid, W48, in the substrate binding pocket of wild-type XylCg was identified as an important residue affecting XylCg's catalytic efficiency.
Collapse
|
33
|
Verma D, Satyanarayana T. Molecular approaches for ameliorating microbial xylanases. BIORESOURCE TECHNOLOGY 2012; 117:360-367. [PMID: 22595098 DOI: 10.1016/j.biortech.2012.04.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 05/31/2023]
Abstract
In industrial processes, chemical catalysis is being replaced by enzyme catalysis, since the latter is environmentally benign, non-persistent and cost effective. Microbial xylanases have significant applications in textile, baking, food and feed industries, and in paper and pulp industries for reducing the chlorine requirement. The hazardous chlorine required for bleaching can be reduced up to 25-30% by including an enzymatic step in the pulp bleaching process. The paper pulp bleaching requires xylanases that are active at alkaline pH and elevated temperatures. The enzymes from the cultured microbes do not perform optimally in the paper industry due to their inadequate stability under the process conditions of high temperature and alkaline pH. This review, therefore, deals with the rationale of molecular approaches such as protein engineering for designing xylanases with improved characteristics to suit the process conditions in industries, and prospects and problems.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Microbiology, University of Delhi South Campus, New Delhi 110 021, India
| | | |
Collapse
|
34
|
Kim DY, Ham SJ, Kim HJ, Kim J, Lee MH, Cho HY, Shin DH, Rhee YH, Son KH, Park HY. Novel modular endo-β-1,4-xylanase with transglycosylation activity from Cellulosimicrobium sp. strain HY-13 that is homologous to inverting GH family 6 enzymes. BIORESOURCE TECHNOLOGY 2012; 107:25-32. [PMID: 22230776 DOI: 10.1016/j.biortech.2011.12.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
The gene (2304-bp) encoding a novel xylanolytic enzyme (XylK2) with a catalytic domain, which is 70% identical to that of Cellulomonas flavigena DSM 20109 GH6 β-1,4-cellobiohydrolase, was identified from an earthworm (Eisenia fetida)-symbiotic bacterium, Cellulosimicrobium sp. strain HY-13. The enzyme consisted of an N-terminal catalytic GH6-like domain, a fibronectin type 3 (Fn3) domain, and a C-terminal carbohydrate-binding module 2 (CBM 2). XylK2ΔFn3-CBM 2 displayed high transferase activity (788.3 IU mg(-1)) toward p-nitrophenyl (PNP) cellobioside, but did not degrade xylobiose, glucose-based materials, or other PNP-sugar derivatives. Birchwood xylan was degraded by XylK2ΔFn3-CBM 2 to xylobiose (59.2%) and xylotriose (40.8%). The transglycosylation activity of the enzyme, which enabled the formation of xylobiose (33.6%) and xylotriose (66.4%) from the hydrolysis of xylotriose, indicates that it is not an inverting enzyme but a retaining enzyme. The endo-β-1,4-xylanase activity of XylK2ΔFn3-CBM 2 increased significantly by approximately 2.0-fold in the presence of 50mM xylobiose.
Collapse
Affiliation(s)
- Do Young Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Structural insights into the acidophilic pH adaptation of a novel endo-1,4-β-xylanase from Scytalidium acidophilum. Biochimie 2010; 92:1407-15. [DOI: 10.1016/j.biochi.2010.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/02/2010] [Indexed: 11/22/2022]
|
36
|
Paenibacillus sp. strain E18 bifunctional xylanase-glucanase with a single catalytic domain. Appl Environ Microbiol 2010; 76:3620-4. [PMID: 20382811 DOI: 10.1128/aem.00345-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xylanases are utilized in a variety of industries for the breakdown of plant materials. Most native and engineered bifunctional/multifunctional xylanases have separate catalytic domains within the same polypeptide chain. Here we report a new bifunctional xylanase (XynBE18) produced by Paenibacillus sp. E18 with xylanase and beta-1,3-1,4-glucanase activities derived from the same active center by substrate competition assays and site-directed mutagenesis of xylanase catalytic Glu residues (E129A and E236A). The gene consists of 981 bp, encodes 327 amino acids, and comprises only one catalytic domain that is highly homologous to the glycoside hydrolase family 10 xylanase catalytic domain. Recombinant XynBE18 purified from Escherichia coli BL21(DE3) showed specificity toward oat spelt xylan and birchwood xylan and beta-1,3-1,4-glucan (barley beta-glucan and lichenin). Homology modeling and molecular dynamic simulation were used to explore structure differences between XynBE18 and the monofunctional xylanase XynE2, which has enzymatic properties similar to those of XynBE18 but does not hydrolyze beta-1,3-1,4-glucan. The cleft containing the active site of XynBE18 is larger than that of XynE2, suggesting that XynBE18 is able to bind larger substrates such as barley beta-glucan and lichenin. Further molecular docking studies revealed that XynBE18 can accommodate xylan and beta-1,3-1,4-glucan, but XynE2 is only accessible to xylan. These results indicate a previously unidentified structure-function relationship for substrate specificities among family 10 xylanases.
Collapse
|