1
|
Wan H, Feng Y, Wu J, Zhu L, Mi Y. Functions and mechanisms of N6‑methyladenosine in prostate cancer (Review). Mol Med Rep 2022; 26:280. [PMID: 35856412 PMCID: PMC9364137 DOI: 10.3892/mmr.2022.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) has long been a major public health problem affecting men worldwide. Even with treatment, it can develop into castration-resistant PCa. With the continuous advancement in epigenetics, researchers have explored N6-methyladenosine (m6A) in search of a more effective and lasting treatment for PCa. m6A is widely distributed in mammalian cells and influences various aspects of mRNA metabolism. Recently, it has been associated with the development or suppression of various types of cancer, including PCa. This review summarizes the recent findings on m6A regulation and its functions and mechanisms in cells, focusing on the various functional proteins operating within m6A in PCa cells. Moreover, the potential clinical value of exploiting m6A modification as an early diagnostic marker in PCa diagnosis and therapeutics was discussed. m6A may also be used as an indicator to evaluate treatment outcome and prognosis.
Collapse
Affiliation(s)
- Hongyuan Wan
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Yanyan Feng
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Junjie Wu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Lijie Zhu
- Department of Urology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Yuanyuan Mi
- Department of Urology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
2
|
Toda K, Tsukayama I, Nagasaki Y, Konoike Y, Tamenobu A, Ganeko N, Ito H, Kawakami Y, Takahashi Y, Miki Y, Yamamoto K, Murakami M, Suzuki-Yamamoto T. Red-kerneled rice proanthocyanidin inhibits arachidonate 5-lipoxygenase and decreases psoriasis-like skin inflammation. Arch Biochem Biophys 2020; 689:108307. [PMID: 32112739 DOI: 10.1016/j.abb.2020.108307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
Abstract
5-lipoxygenase is a key enzyme in the synthesis of leukotrienes from arachidonic acid. The produced leukotrienes are involved in inflammatory diseases including psoriasis, asthma, and atherosclerosis. A suitable 5-lipoxygenase inhibitor might be useful for preventing and improving the symptoms of leukotriene-related inflammatory diseases. Here, we investigate the mechanism underlying the anti-inflammatory effect of a proanthocyanidin found in red-kerneled rice. Red-kerneled rice proanthocyanidin exhibited potent mixed noncompetitive inhibition of human and rat 5-lipoxygenases, with an IC50 values of 15.1 μM against human enzyme, and 7.0 μM against rat enzyme, respectively. This compound decreased leukotriene B4 production in rat basophilic leukemia-2H3 cells. In imiquimod-induced psoriasis-like mouse skin, topical application of the proanthocyanidin suppressed hyperplasia, decreased inflammatory cell infiltration, and down-regulated expression of the psoriasis-associated genes Il17a, Il22, S100a9, and Krt1. Lipid metabolome analysis by electrospray ionization mass spectrometry showed that red-kerneled rice proanthocyanidin treatment of psoriasis-like mouse skin dose-dependently decreased the production of leukotriene B4 but no other arachidonate metabolites. Red-kerneled rice proanthocyanidin inhibits 5-lipoxygenase, resulting in a decrease in leukotriene B4 production and psoriasis-like mouse skin inflammation. These results suggest that this proanthocyanidin may be therapeutically effective for treating leukotriene-related diseases.
Collapse
Affiliation(s)
- Keisuke Toda
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Izumi Tsukayama
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yuki Nagasaki
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yuka Konoike
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan; Department of Nutrition and Life Science, Fukuyama University, Sanzo, Gakuen-cho 1, Fukuyama, Hiroshima, 729-0292, Japan
| | - Asako Tamenobu
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Natsuki Ganeko
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Hideyuki Ito
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kei Yamamoto
- Graduate School of Technology, Industrial and Social Science, Tokushima University, 2-1, Minami-jyosanjima-cho, Tokushima, 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan.
| |
Collapse
|
3
|
Martin TM, Plautz SA, Pannier AK. Temporal endogenous gene expression profiles in response to polymer-mediated transfection and profile comparison to lipid-mediated transfection. J Gene Med 2015; 17:33-53. [PMID: 25663627 DOI: 10.1002/jgm.2822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Design of efficient nonviral gene delivery systems is limited by the rudimentary understanding of specific molecules that facilitate transfection. METHODS Polyplexes using 25-kDa polyethylenimine (PEI) and plasmid-encoding green fluorescent protein (GFP) were delivered to HEK 293T cells. After treating cells with polyplexes, microarrays were used to identify endogenous genes differentially expressed between treated and untreated cells (2 h of exposure) or between flow-separated transfected cells (GFP+) and treated, untransfected cells (GFP-) at 8, 16 and 24 h after lipoplex treatment. Cell priming studies were conducted using pharmacologic agents to alter endogenous levels of the identified differentially expressed genes to determine effect on transfection levels. Differentially expressed genes in polyplex-mediated transfection were compared with those differentially expressed in lipoplex transfection to identify DNA carrier-dependent molecular factors. RESULTS Differentially expressed genes were RGS1, ARHGAP24, PDZD2, SNX24, GSN and IGF2BP1 after 2 h; RAP1A and ACTA1 after 8 h; RAP1A, WDR78 and ACTA1 after 16 h; and RAP1A, SCG5, ATF3, IREB2 and ACTA1 after 24 h. Pharmacologic studies altering endogenous levels for ARHGAP24, GSN, IGF2BP1, PDZD2 and RGS1 were able to increase or decrease transgene production. Comparing differentially expressed genes for polyplexes and lipoplexes, no common genes were identified at the 2-h time point, whereas, after the 8-h time point, RAP1A, ATF3 and HSPA6 were similarly expressed. SCG5 and PGAP1 were only upregulated in polyplex-transfected cells. CONCLUSIONS The identified genes and pharmacologic agents provide targets for improving transfection systems, although polyplex or lipoplex dependencies must be considered.
Collapse
Affiliation(s)
- Timothy M Martin
- Department of Pharmaceutical Sciences, Durham Research Center II, University of Nebraska-Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
4
|
Goswami S, Tarapore RS, Poenitzsch Strong AM, TeSlaa JJ, Grinblat Y, Setaluri V, Spiegelman VS. MicroRNA-340-mediated degradation of microphthalmia-associated transcription factor (MITF) mRNA is inhibited by coding region determinant-binding protein (CRD-BP). J Biol Chem 2014; 290:384-95. [PMID: 25414259 DOI: 10.1074/jbc.m114.590158] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alternative cleavage and polyadenylation generates multiple transcript variants producing mRNA isoforms with different length 3'-UTRs. Alternative cleavage and polyadenylation enables differential post-transcriptional regulation via the availability of different cis-acting elements in 3'-UTRs. Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte development and melanogenesis. This central transcription factor is also implicated in melanoma development. Here, we show that melanoma cells favor the expression of MITF mRNA with a shorter 3'-UTR. We also establish that this isoform is regulated by a micro RNA (miRNA/miR), miR-340. miR-340 interacts with two of its target sites on the MITF 3'-UTR, causing mRNA degradation as well as decreased expression and activity of MITF. Conversely, the RNA-binding protein, coding region determinant-binding protein, was shown to be highly expressed in melanoma, directly binds to the 3'-UTR of MITF mRNA, and prevents the binding of miR-340 to its target sites, resulting in the stabilization of MITF transcripts, elevated expression, and transcriptional activity of MITF. This regulatory interplay between RNA-binding protein and miRNA highlights an important mechanism for the regulation of MITF in melanocytes and malignant melanomas.
Collapse
Affiliation(s)
- Srikanta Goswami
- From the Department of Dermatology and Paul P. Carbone Comprehensive Cancer Center
| | - Rohinton S Tarapore
- From the Department of Dermatology and Paul P. Carbone Comprehensive Cancer Center, the Molecular and Environmental Toxicology Center, and
| | - Ashley M Poenitzsch Strong
- From the Department of Dermatology and Paul P. Carbone Comprehensive Cancer Center, the Molecular and Environmental Toxicology Center, and
| | - Jessica J TeSlaa
- the Departments of Zoology and Anatomy, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Yevgenya Grinblat
- the Molecular and Environmental Toxicology Center, and the Departments of Zoology and Anatomy, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | | | - Vladimir S Spiegelman
- From the Department of Dermatology and Paul P. Carbone Comprehensive Cancer Center, the Molecular and Environmental Toxicology Center, and
| |
Collapse
|
5
|
Kessler SM, Pokorny J, Zimmer V, Laggai S, Lammert F, Bohle RM, Kiemer AK. IGF2 mRNA binding protein p62/IMP2-2 in hepatocellular carcinoma: antiapoptotic action is independent of IGF2/PI3K signaling. Am J Physiol Gastrointest Liver Physiol 2013; 304:G328-36. [PMID: 23257922 DOI: 10.1152/ajpgi.00005.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The insulin-like growth factor II (IGF2) mRNA binding protein (IMP) p62/IMP2-2, originally isolated from a hepatocellular carcinoma (HCC) patient, induces a steatotic phenotype when overexpressed in mouse livers. Still, p62 transgenic livers do not show liver cell damage but exhibit a pronounced induction of Igf2 and activation of the downstream survival kinase AKT. The aim of this study was to investigate the relation between p62 and IGF2 expression in the human system and to study potential antiapoptotic actions of p62. p62 and IGF2 mRNA levels were assessed by real-time RT-PCR. For knockdown and overexpression experiments, human hepatoma HepG2 and PLC/PRF/5 cells were transfected with siRNA or plasmid DNA. Phosphorylated AKT and ERK1/2 were analyzed by Western blot. Investigations of 32 human HCC tissues showed a strong correlation between p62 and IGF2 expression. Of note, p62 expression was increased markedly in patients with poor outcome. In hepatoma cells overexpression of p62 lowered levels of doxorubicin-induced caspase-3-like activity. Vice versa, knockdown of p62 resulted in increased doxorubicin-induced apoptosis. However, neither PI3K inhibitors nor a neutralizing IGF2 antibody showed any effects. Western blot analysis revealed increased levels of phosphorylated ERK1/2 in hepatoma cells overexpressing p62 and decreased levels in p62 knockdown experiments. When p62-overexpressing cells were treated with ERK1/2 inhibitors, the apoptosis-protecting effect of p62 was completely abrogated. Our data demonstrate that p62 exerts IGF2-independent antiapoptotic action, which is facilitated via phosphorylation of ERK1/2. Furthermore, p62 might serve as a new prognostic marker in HCC.
Collapse
Affiliation(s)
- Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Gao M, Patel R, Ahmad I, Fleming J, Edwards J, McCracken S, Sahadevan K, Seywright M, Norman J, Sansom O, Leung HY. SPRY2 loss enhances ErbB trafficking and PI3K/AKT signalling to drive human and mouse prostate carcinogenesis. EMBO Mol Med 2012; 4:776-90. [PMID: 22649008 PMCID: PMC3494076 DOI: 10.1002/emmm.201100944] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 04/06/2012] [Accepted: 04/20/2012] [Indexed: 01/01/2023] Open
Abstract
Loss of SPRY2 and activation of receptor tyrosine kinases are common events in prostate cancer (PC). However, the molecular basis of their interaction and clinical impact remains to be fully examined. SPRY2 loss may functionally synergize with aberrant cellular signalling to drive PC and to promote treatment-resistant disease. Here, we report evidence for a positive feedback regulation of the ErbB-PI3K/AKT cascade by SPRY2 loss in in vitro as well as pre-clinical in vivo models and clinical PC. Reduction in SPRY2 expression resulted in hyper-activation of PI3K/AKT signalling to drive proliferation and invasion by enhanced internalization of EGFR/HER2 and their sustained signalling at the early endosome in a PTEN-dependent manner. This involved p38 MAPK activation by PI3K to facilitate clathrin-mediated ErbB receptor endocytosis. Finally, in vitro and in vivo inhibition of PI3K suppressed proliferation and invasion, supporting PI3K/AKT as a target for therapy particularly in patients with PTEN-haploinsufficient-, low SPRY2- and ErbB-expressing tumours. In conclusion, SPRY2 is an important tumour suppressor in PC since its loss drives the PI3K/AKT pathway via functional interaction with the ErbB system.
Collapse
Affiliation(s)
- Meiling Gao
- Beatson Institute for Cancer ResearchGlasgow, UK
| | | | - Imran Ahmad
- Beatson Institute for Cancer ResearchGlasgow, UK
- Institute for Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowUK
| | | | - Joanne Edwards
- Institute for Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowUK
| | - Stuart McCracken
- Northern Institute for Cancer Research, Medical School, University of Newcastle-upon-TyneNewcastle-upon-Tyne, UK
| | - Kanagasabai Sahadevan
- Northern Institute for Cancer Research, Medical School, University of Newcastle-upon-TyneNewcastle-upon-Tyne, UK
| | - Morag Seywright
- Department of Pathology, NHS Greater Glasgow and ClydeGlasgow, UK
| | - Jim Norman
- Beatson Institute for Cancer ResearchGlasgow, UK
| | - Owen Sansom
- Beatson Institute for Cancer ResearchGlasgow, UK
| | - Hing Y Leung
- Beatson Institute for Cancer ResearchGlasgow, UK
- Institute for Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowUK
| |
Collapse
|
7
|
Mechanisms of prostate atrophy after LHRH antagonist cetrorelix injection: an experimental study in a rat model of benign prostatic hyperplasia. ACTA ACUST UNITED AC 2012; 32:389-395. [PMID: 22684563 DOI: 10.1007/s11596-012-0067-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Indexed: 12/17/2022]
Abstract
In the present study, we investigated the roles of TGF-β signaling pathway in a rat benign prostatic hyperplasia (BPH) model treated with cetrorelix. TGF-β1 and c-Myc expression were measured by qRT-PCR and Western blotting in the proximal and distal region of ventral prostatic lobes, respectively. We observed that treatment with cetrorelix led to a significant reduction of ventral prostate weight in a dose-dependent manner. In the proximal region, after cetrorelix treatment, the expression of TGF-β1 was dramatically increased (P<0.05), while the expression of c-Myc was significantly decreased (P<0.05). In comparison with the control group, the cetrorelix groups had more TUNEL-positive cells. Our findings strongly suggest that the TGF-β signaling pathway may be one of the major causes responsible for prostate volume reduction in BPH rats after cetrorelix treatment.
Collapse
|
8
|
Mongroo PS, Noubissi FK, Cuatrecasas M, Kalabis J, King CE, Johnstone CN, Bowser MJ, Castells A, Spiegelman VS, Rustgi AK. IMP-1 displays cross-talk with K-Ras and modulates colon cancer cell survival through the novel proapoptotic protein CYFIP2. Cancer Res 2011; 71:2172-82. [PMID: 21252116 DOI: 10.1158/0008-5472.can-10-3295] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding protein-1 (IMP-1) is an oncofetal protein that binds directly to and stabilizes oncogenic c-Myc and regulates, in turn, its posttranscriptional expression and translation. In contrast to normal adult tissue, IMP-1 is reexpressed and/or overexpressed in human cancers. We show that knockdown of c-Myc in human colon cancer cell lines increases the expression of mature let-7 miRNA family members and downregulates several of its mRNA targets: IMP-1, Cdc34, and K-Ras. We further show that loss of IMP-1 inhibits Cdc34, Lin-28B, and K-Ras, suppresses SW-480 cell proliferation and anchorage-independent growth, and promotes caspase- and lamin-mediated cell death. We also found that IMP-1 binds to the coding region and 3'UTR of K-Ras mRNA. RNA microarray profiling and validation by reverse transcription PCR reveals that the p53-inducible proapoptotic protein CYFIP2 is upregulated in IMP-1 knockdown SW480 cells, a novel finding. We also show that overexpression of IMP-1 increases c-Myc and K-Ras expression and LIM2405 cell proliferation. Furthermore, we show that loss of IMP-1 induces Caspase-3- and PARP-mediated apoptosis, and inhibits K-Ras expression in SW480 cells, which is rescued by CYFIP2 knockdown. Importantly, analysis of 228 patients with colon cancers reveals that IMP-1 is significantly upregulated in differentiated colon tumors (P ≤ 0.0001) and correlates with K-Ras expression (r = 0.35, P ≤ 0.0001) relative to adjacent normal mucosa. These findings indicate that IMP-1, interrelated with c-Myc, acts upstream of K-Ras to promote survival through a novel mechanism that may be important in colon cancer pathogenesis.
Collapse
Affiliation(s)
- Perry S Mongroo
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Goswami S, Tarapore RS, Teslaa JJ, Grinblat Y, Setaluri V, Spiegelman VS. MicroRNA-340-mediated degradation of microphthalmia-associated transcription factor mRNA is inhibited by the coding region determinant-binding protein. J Biol Chem 2010; 285:20532-40. [PMID: 20439467 DOI: 10.1074/jbc.m110.109298] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative cleavage and polyadenylation generate multiple transcript variants of mRNA isoforms with different length of 3'-untranslated region (UTR). Alternative cleavage and polyadenylation enable differential post-transcriptional regulation of transcripts via the availability of different cis-acting elements in 3'-UTRs. Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte development and melanogenesis. It has also been implicated in melanoma development. Here we show that melanoma cells favor the expression of MITF mRNA with shorter 3'-UTR. This isoform of mRNA is regulated by microRNA, miR-340. miR-340 interacts with two of its target sites on the 3'-UTR of MITF mRNA, causing mRNA degradation and decreased expression and activity of MITF. On the other hand, the RNA-binding protein coding region determinant-binding protein, shown to be highly expressed in melanoma, directly binds to the 3'-UTR of MITF mRNA and prevents the binding of miR-340 to its target sites, resulting in stabilization of the MITF transcript and elevated expression and transcriptional activity of MITF. This interplay between RNA-binding protein and miRNA describes the important mechanism of regulation of MITF in melanocytes and malignant melanomas.
Collapse
Affiliation(s)
- Srikanta Goswami
- Department of Dermatology and the Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|