1
|
Simón-Gracia L, Kiisholts K, Petrikaitė V, Tobi A, Saare M, Lingasamy P, Peters M, Salumets A, Teesalu T. Homing Peptide-Based Targeting of Tenascin-C and Fibronectin in Endometriosis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3257. [PMID: 34947606 PMCID: PMC8708492 DOI: 10.3390/nano11123257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022]
Abstract
The current diagnostic and therapeutic strategies for endometriosis are limited. Although endometriosis is a benign condition, some of its traits, such as increased cell invasion, migration, tissue inflammation, and angiogenesis are similar to cancer. Here we explored the application of homing peptides for precision delivery of diagnostic and therapeutic compounds to endometriotic lesions. First, we audited a panel of peptide phages for the binding to the cultured immortalized endometriotic epithelial 12Z and eutopic stromal HESC cell lines. The bacteriophages displaying PL1 peptide that engages with angiogenic extracellular matrix overexpressed in solid tumors showed the strongest binding to both cell lines. The receptors of PL1 peptide, tenascin C domain C (TNC-C) and fibronectin Extra Domain-B (Fn-EDB), were expressed in both cells. Silver nanoparticles functionalized with synthetic PL1 peptide showed specific internalization in 12Z and HESC cells. Treatment with PL1-nanoparticles loaded with the potent antimitotic drug monomethyl auristatin E decreased the viability of endometriotic cells in 2D and 3D cultures. Finally, PL1-nanoparticless bound to the cryosections of clinical peritoneal endometriotic lesions in the areas positive for TNC-C and Fn-EDB immunoreactivities and not to sections of normal endometrium. Our findings suggest potential applications for PL1-guided nanoparticles in precision diagnosis and therapy of endometriosis.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (L.S.-G.); (A.T.); (P.L.)
| | - Kristina Kiisholts
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (K.K.); (M.S.); (M.P.); (A.S.)
| | - Vilma Petrikaitė
- Laboratory of Drug Target Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
- Life Sciences Center, Institute of Biotechnology, Vilnius University, 10257 Vilnius, Lithuania
| | - Allan Tobi
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (L.S.-G.); (A.T.); (P.L.)
| | - Merli Saare
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (K.K.); (M.S.); (M.P.); (A.S.)
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Prakash Lingasamy
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (L.S.-G.); (A.T.); (P.L.)
| | - Maire Peters
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (K.K.); (M.S.); (M.P.); (A.S.)
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (K.K.); (M.S.); (M.P.); (A.S.)
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14152 Stockholm, Sweden
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (L.S.-G.); (A.T.); (P.L.)
- Center for Nanomedicine, Department of Cell, Molecular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Dietze R, Starzinski-Powitz A, Scheiner-Bobis G, Tinneberg HR, Meinhold-Heerlein I, Konrad L. Lysophosphatidic acid triggers cathepsin B-mediated invasiveness of human endometriotic cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1369-1377. [PMID: 30591146 DOI: 10.1016/j.bbalip.2018.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/13/2018] [Accepted: 08/19/2018] [Indexed: 02/06/2023]
Abstract
Extracellular lysophosphatidic acid (LPA) and the G-protein-coupled LPA receptors (LPAR) are involved in cell migration and invasion and found in the human endometrium. However, underlying mechanisms resulting in cellular invasion have been rarely investigated. We used stromal endometrial T-HESC, epithelial endometriotic 12Z, 49Z and Ishikawa cells. Interestingly, proliferation of T-HESC cells was strongly increased after LPA treatment, whereas the epithelial cell lines only showed a moderate increase. LPA increased invasion of 12Z and 49Z strongly and significantly. The LPAR inhibitor Ki16425 (LPAR1/3) attenuated significantly LPA-induced invasiveness of 12Z, which was confirmed by LPAR1 and LPAR3 siRNAs, showing that both LPA receptors contribute to invasiveness of 12Z cells. Investigation of cell invasion with an antibody-based protease array revealed mainly differences in cathepsins and especially cathepsin B between 12Z compared to the less invasive Ishikawa. Stimulation with LPA showed a time- and dose-dependent increased secretion of cathepsin B which was inhibited by the Gq inhibitor YM-254890 and Gi/o inhibitor pertussis toxin in the 12Z cells, again highlighting the importance of LPAR1/3. The activity of intracellular and secreted cathepsin B was significantly upregulated in LPA-treated samples. Inhibition of cathepsin B with the specific inhibitor CA074 significantly reduced LPA-increased invasion of 12Z. Our results reveal a novel role of LPA-mediated secretion of cathepsin B which stimulated invasion of endometriotic epithelial cells mainly via LPAR1 and LPAR3. These findings may deepen our understanding how endometriotic cells invade into ectopic sites, and provide new insights into the role of LPA and cathepsin B in cellular invasion.
Collapse
Affiliation(s)
- Raimund Dietze
- Department of Obstetrics and Gynecology, Medical Faculty, Justus-Liebig-University, Feulgenstr. 12, 35392 Giessen, Germany
| | - Anna Starzinski-Powitz
- Institute for Cell Biology and Neuroscience, Molecular Cell Biology and Human Genetics, Johann-Wolfgang-Goethe University of Frankfurt, Germany
| | - Georgios Scheiner-Bobis
- Institute for Veterinary-Physiology and -Biochemistry, School of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Hans-Rudolf Tinneberg
- Department of Obstetrics and Gynecology, Medical Faculty, Justus-Liebig-University, Feulgenstr. 12, 35392 Giessen, Germany
| | - Ivo Meinhold-Heerlein
- Department of Obstetrics and Gynecology, Medical Faculty, Justus-Liebig-University, Feulgenstr. 12, 35392 Giessen, Germany
| | - Lutz Konrad
- Department of Obstetrics and Gynecology, Medical Faculty, Justus-Liebig-University, Feulgenstr. 12, 35392 Giessen, Germany.
| |
Collapse
|