1
|
Wu W, Yuan J, Liu F, Liu L, Wang X, Li X, Tao K. Research progress on anatomy reconstruction of rat orthotopic liver transplantation. Transplant Rev (Orlando) 2024; 38:100841. [PMID: 38518424 DOI: 10.1016/j.trre.2024.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Rat orthotopic liver transplantation (ROLT) serves as an ideal animal model and has gained popularity in addressing complications and perioperative treatments related to clinical liver transplantation. Through extensive research on ROLT model construction, the conventional "two-cuff" method has gradually become established. However, traditional methods still present challenges including limited visual field during vascular suturing, vascular torsion, biliary tract injuries, and prolonged anhepatic periods. Consequently, this paper aims to review the latest advancements and various techniques in this field, providing a valuable reference for individuals interested in constructing ROLT models.
Collapse
Affiliation(s)
- Weikang Wu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Juzheng Yuan
- Department of General Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fuyuan Liu
- Department of General Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lu Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xudan Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao Li
- Department of General Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
2
|
Abstract
Animal models provide the link between in vitro research and the first in-man application during clinical trials. They provide substantial information in preclinical studies for the assessment of new therapeutic interventions in advance of human clinical trials. However, each model has its advantages and limitations in the ability to imitate specific pathomechanisms. Therefore, the selection of an animal model for the evaluation of a specific research question or evaluation of a novel therapeutic strategy requires a precise analysis. Transplantation research is a discipline that largely benefits from the use of animal models with mouse and pig models being the most frequently used models in organ transplantation research. A suitable animal model should reflect best the situation in humans, and the researcher should be aware of the similarities as well as the limitations of the chosen model. Small animal models with rats and mice are contributing to the majority of animal experiments with the obvious advantages of these models being easy handling, low costs, and high reproductive rates. However, unfortunately, they often do not translate to clinical use. Large animal models, especially in transplantation medicine, are an important element for establishing preclinical models that do often translate to the clinic. Nevertheless, they can be costly, present increased regulatory requirements, and often are of high ethical concern. Therefore, it is crucial to select the right animal model from which extrapolations and valid conclusions can be obtained and translated into the human situation. This review provides an overview in the models frequently used in organ transplantation research.
Collapse
|
3
|
Chen Y, Zhang W, Bao H, He W, Chen L. High Mobility Group Box 1 Contributes to the Acute Rejection of Liver Allografts by Activating Dendritic Cells. Front Immunol 2021; 12:679398. [PMID: 34177922 PMCID: PMC8222728 DOI: 10.3389/fimmu.2021.679398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023] Open
Abstract
Acute rejection induced by the recognition of donor alloantigens by recipient T cells leads to graft failure in liver transplant recipients. The role of high mobility group box 1 (HMGB1), an inflammatory mediator, in the acute allograft rejection of liver transplants is unknown. Here, rat orthotopic liver transplantation was successfully established to analyze the expression pattern of HMGB1 in liver allografts and its potential role in promoting the maturation of dendritic cells (DCs) to promote T cell proliferation and differentiation. Five and 10 days after transplantation, allografts showed a marked upregulation of HMGB1 expression accompanied by elevated levels of serum transaminase and CD3+ and CD86+ inflammatory cell infiltration. Furthermore, in vitro experiments showed HMGB1 increased the expressions of co-stimulatory molecules (CD80, CD83, and MHC class II) on bone marrow-derived DCs. HMGB1-pulsed DCs induced naive CD4+ T cells to differentiate to Th1 and Th17 subsets secreting IFN-γ and IL-17, respectively. Further in vivo experiments confirmed the administration of glycyrrhizic acid, a natural HMGB1 inhibitor, during donor liver preservation had therapeutic effects by reducing inflammation and hepatocyte damage reflected by a decline in serum transaminase and prolonged allograft survival time. These results suggest the involvement of HMBG1 in acute liver allograft rejection and that it might be a candidate therapeutic target to avoid acute rejection after liver transplantation.
Collapse
Affiliation(s)
- Yi Chen
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Wenmin Zhang
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Institute of Oncology, Fujian Medical University, Fuzhou, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Hui Bao
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Institute of Oncology, Fujian Medical University, Fuzhou, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Wubing He
- Department of Emergency, Fujian Provincial Hospital; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lihong Chen
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,Institute of Oncology, Fujian Medical University, Fuzhou, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Zhang N, Sheng M, Wu M, Zhang X, Ding Y, Lin Y, Yu W, Wang S, Du H. Berberine protects steatotic donor undergoing liver transplantation via inhibiting endoplasmic reticulum stress-mediated reticulophagy. Exp Biol Med (Maywood) 2019; 244:1695-1704. [PMID: 31554427 DOI: 10.1177/1535370219878651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Steatotic livers are more susceptible to ischemia/reperfusion injury, and increase the risk of primary graft non-function after liver transplantation. The protective effects of berberine have been described in various liver pathological models. However, it is unknown if berberine exerts its beneficial action in steatotic donors undergoing liver transplantation. In the present study, male Wistar rats were fed with high-fat diet (HFD) for 12 weeks to induce moderate steatotic liver. Then orthotropic liver transplantation was constructed. Berberine (200 mg/kg/d) was given intragastrically one week before liver transplantation. Thapsigargin (TG) (0.2 mg/kg) was administrated intravenously 24 h before liver transplantation. Liver function, oxidative stress, and inflammatory cytokine were detected by biochemical or histopathological analysis. The morphology of autophagosomes and endoplasmic reticulum (ER) was observed by transmission electron microscopy. The expression of CHOP, BIP, the phosphorylation of PERK, LC3-II/I, Beclin-1, and p62 were determined by Western blot assay. The co-localization of endoplasmic reticulum marker (KDEL) and autophagic protein (LC3B) was analyzed by immunofluorescence microscopy. The level of reticulophagy hallmark (FAM134B) was determined by immunohistochemistry. Compared with HFD + LT group, berberine ameliorated hepatocellular damage, decreased the oxidative stress level and inflammatory cytokine release. Simultaneously, berberine inhibited the expression of both endoplasmic reticulum stress parameters and autophagy-related proteins. Additionally, the co-localization of endoplasmic reticulum marker and LC3B was also reduced in HFD + BBR + LT group. berberine down-regulated the level of FAM134B. TG reversed the beneficial effects of berberine. Our study revealed that berberine exerts protective effects on steatotic livers undergoing transplantation by inhibiting endoplasmic reticulum stress-mediated reticulophagy. Impact statement Berberine is isolated from traditional Chinese medicine plants and has dramatically therapeutic potential against inflammation, diarrhea, and diabetes. But the benefits of BBR on steatotic grafts after liver transplantation remain poorly understood. Our findings might help explain the mechanism of berberine in protecting steatotic livers undergoing transplantation and give advantageous insights that berberine has potential as a suitable candidate for preventing hepatic injury after steatotic liver transplantation by inhibiting ER stress-mediated reticulophagy.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China.,Department of Anesthesiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Man Wu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xinyue Zhang
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Yijie Ding
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Yuanbang Lin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Shusen Wang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Central Hospital, Tianjin 300192, China
| | - Hongyin Du
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| |
Collapse
|
5
|
Li DY, Shi XJ, Li W, Du XH, Wang GY. Key Points in Establishing a Model of Mouse Liver Transplantation. Transplant Proc 2016; 47:2683-9. [PMID: 26680072 DOI: 10.1016/j.transproceed.2015.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/14/2015] [Indexed: 12/14/2022]
Abstract
The explosion of interest in research into the mouse genome and immune system has meant that the mouse orthotopic liver transplantation (MOLT) model has become a popular means of studying transplantation immunity, organ preservation, ischemia-reperfusion injury, and surgical techniques, among others. Although numerous modifications and refinements of surgical techniques have simplified the operation, the relatively short duration of postoperative survival after MOLT remains an obstacle to longer-term follow-up studies. Here, we summarize the scientific basis of MOLT and our experience improving and refining the model in six key areas: anesthesia, operative technique, perfusion and preservation of the liver, cuff technique, anhepatic time, and the value of rearterialization for the liver graft. We also compare the characteristics of different surgical techniques, and give recommendations for the best means of tailoring technique to the objectives of a study. In doing so, we aim to assist other investigators in establishing and perfecting the MOLT model in their routine research practice.
Collapse
Affiliation(s)
- D-Y Li
- Department of Hepatobiliary & Pancreatic Surgery, the First Norman Bethune Hospital Affiliated to Jilin University, Jilin Province, China
| | - X-J Shi
- Department of Hepatobiliary & Pancreatic Surgery, the First Norman Bethune Hospital Affiliated to Jilin University, Jilin Province, China
| | - W Li
- Department of Hepatobiliary & Pancreatic Surgery, Third Hospital (China-Japan Union Hospital) of Jilin University, Jilin Province, China
| | - X-H Du
- Department of Hepatobiliary & Pancreatic Surgery, the First Norman Bethune Hospital Affiliated to Jilin University, Jilin Province, China
| | - G-Y Wang
- Department of Hepatobiliary & Pancreatic Surgery, the First Norman Bethune Hospital Affiliated to Jilin University, Jilin Province, China.
| |
Collapse
|
6
|
Peloso A, Ferrario J, Maiga B, Benzoni I, Bianco C, Citro A, Currao M, Malara A, Gaspari A, Balduini A, Abelli M, Piemonti L, Dionigi P, Orlando G, Maestri M. Creation and implantation of acellular rat renal ECM-based scaffolds. Organogenesis 2016; 11:58-74. [PMID: 26186418 PMCID: PMC4594518 DOI: 10.1080/15476278.2015.1072661] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Kidney transplantation is the only potentially curative treatment for patient facing end-stage renal disease, and it is now routinely used. Its use is mainly limited by the supply of transplantable donor organs, which far exceeds the demand. Regenerative medicine and tissue engineering offer promising means for overcoming this shortage. In the present study, we developed and validated a protocol for producing acellular rat renal scaffolds. Left kidneys were removed from 26 male Lewis rats (weights: 250–350 g) and decellularized by means of aortic anterograde perfusion with ionic and anionic detergents (Triton X-100 1% and SDS 1%, respectively). 19 scaffolds thus obtained (and contralateral native kidneys as controls) were deeply characterized in order to evaluate the decellularization quality, the preservation of extracellular matrix components and resultant micro-angioarchitecture structure. The other 7 were transplanted into 7 recipient rats that had undergone unilateral nephrectomy. Recipients were sacrificed on post-transplantation day 7 and the scaffolds subjected to histologic studies. The dual-detergent protocol showed, with only 5 h of perfusion per organ, to obtain thoroughly decellularized renal scaffolds consisting almost exclusively of extracellular matrix. Finally the macro- and the microarchitecture of the renal parenchyma were well preserved, and the grafts were implanted with ease. Seven days after transplant, the scaffolds were morphologically intact although all vascular structures were obstructed with thrombi. Production and implantation of acellular rat renal scaffolds is a suitable platform for further studies on regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Andrea Peloso
- a Dept. of General Surgery ; IRCCS Policlinico San Matteo; Dept. of General Surgery; University of Pavia , Pavia , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Czigány Z, Iwasaki J, Yagi S, Nagai K, Szijártó A, Uemoto S, Tolba RH. Improving Research Practice in Rat Orthotopic and Partial Orthotopic Liver Transplantation: A Review, Recommendation, and Publication Guide. Eur Surg Res 2015; 55:119-38. [DOI: 10.1159/000437095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/19/2015] [Indexed: 11/19/2022]
Abstract
Background: Due to a worldwide shortage of donor organs for liver transplantation, alternative approaches, such as split and living donor liver transplantations, were introduced to increase the donor pool and reduce mortality on liver transplant waiting lists. Numerous details concerning the mechanisms and pathophysiology of liver regeneration, small-for-size syndrome, rejection, and tolerance in partial liver transplantation facilitated the development of various animal models. The high number of preclinical animal studies contributed enormously to our understanding of many clinical aspects of living donor and partial liver transplantations. Summary: Microsurgical rat models of partial orthotopic liver transplantation are well established and widely used. Nevertheless, several issues regarding this procedure are controversial, not clarified, or not yet properly standardized (graft rearterialization, size reduction techniques, etc.). The major aim of this literature review is to give the reader a current overview of rat orthotopic liver transplantation models with a special focus on partial liver transplantation. The aspects of model evolution, microsurgical training, and different technical problems are analyzed and discussed in detail. Our further aim in this paper is to elaborate a detailed publication guide in order to improve the quality of reporting in the field of rat liver transplantation according to the ARRIVE guidelines and the 3R principle. Key Messages: Partial orthotopic liver transplantation in rats is an indispensable, reliable, and cost-efficient model for transplantation research. A certain consensus on different technical issues and a significant improvement in scientific reporting are essential to improve transparency and comparability in this field as well as to foster refinement.
Collapse
|
8
|
Wang H, Li C, Hu J, Xu H, Ji X, Wang X, Wang X, Luo Y, Li H, Xu K, Ye S, Zhang A, Dong J. Effect of different suprahepatic vena cava reconstruction methods on the hemodynamics of rats after liver transplantation. PLoS One 2013; 8:e72695. [PMID: 24023763 PMCID: PMC3762803 DOI: 10.1371/journal.pone.0072695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There are few studies on the hemodynamic changes after orthotopic liver transplantation in rats. In this study, we aimed to evaluate the effect of different suprahepatic vena cava (SHVC) reconstruction methods on the hemodynamics of rats after liver transplantation. MATERIALS AND METHODS Three rat liver transplantation groups were created according to the SHVC reconstruction method: Kamada's two-cuff technique, a modified veno-lined stent technique, and Harihara's three-cuff technique. Ten rats of similar weight were grouped as the control. Anatomical, ultrasonic, and hemodynamic parameters and the microcirculation of the liver were measured after transplantation. The detailed operation time, operative complications, and animal survival were recorded. RESULTS All the recipients showed portal hypertension one month after transplantation. The portal hypertension in the group with the modified veno-lined stent technique was the most severe. The value measured with real-time elastography was significantly higher in the recipients using the modified veno-lined stent technique than in the other two groups (P<0.01). There was no difference in the graft microcirculation after reperfusion among the three groups. The survival rate of the three groups displayed no difference, but the modified veno-lined stent technique led to more venous complications than the other two techniques. CONCLUSIONS The hemodynamics after liver transplantation in rats is determined not only by the cuff used for portal vein reconstruction but also by the cuff or stent for the SHVC. Some SHVC reconstruction methods, such as the modified veno-lined stent technique, Miyata's or Settaf's three-cuff techniques, significantly affect the hemodynamics.
Collapse
Affiliation(s)
- Hongdong Wang
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Chonghui Li
- Hospital and Institute of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Jianjun Hu
- Hospital and Institute of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Hongbin Xu
- Hospital and Institute of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Xu Ji
- Department of Hepatobiliary Surgery, 302 Hospital of PLA, Beijing, China
| | - Xiaofeng Wang
- Hospital and Institute of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Xuedong Wang
- Hospital and Institute of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Yukun Luo
- Department of Ultrasound, PLA General Hospital, Beijing, China
| | - Hailin Li
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Kesen Xu
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Sheng Ye
- Hospital and Institute of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Aiqun Zhang
- Hospital and Institute of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Jiahong Dong
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Hospital and Institute of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Shimizu A, Ishii E, Masuda Y, Sato A, Piao H, Kunugi S, Takahashi M, Terasaki M, Nagasaka S, Terasaki Y, Ohashi R, Morioka T, Fukuda Y. Renal inflammatory changes in acute hepatic failure-associated acute kidney injury. Am J Nephrol 2013; 37:378-88. [PMID: 23548419 DOI: 10.1159/000348567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Acute kidney injury (AKI) is a common complication in advanced liver dysfunction. Our aim is to clarify the mechanisms of acute hepatic failure (AHF)-associated AKI. METHODS We examined the mechanisms of AHF-associated AKI, which is characterized by AKI in AHF and hyperbilirubinemia, following DA-to-Lewis rat liver transplantation. RESULTS During the progression of AHF and hyperbilirubinemia in liver graft rejection, AHF-associated AKI gradually developed by day 11. Degeneration and apoptotic cells were apparent in tubular epithelial cells with bile pigment accumulation and mitochondrial degeneration. Injury of peritubular capillaries (PTCs) was also noted with apoptotic endothelial cells, decreased expression of endothelial nitric oxide synthase, accumulation of α-smooth muscle actin+ pericytes and/or myofibroblasts, and inflammation. Angiogenic factors including vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 in the cortex were decreased on day 11. In addition, a marked reduction in the velocity of red blood cells in PTCs was evident in vivo. CONCLUSIONS AHF-associated AKI seems to be mediated by renal tubular epithelial cell injury with bile pigment accumulation, impaired microcirculation caused by PTC endothelial cell injury with depletion of endothelial nitric oxide synthase and angiogenic factors, and by a decrease in RBC velocity and renal inflammation. Multiple mechanisms including tubular and PTC injuries and renal inflammation may be involved in the development of AHF-associated AKI.
Collapse
Affiliation(s)
- Akira Shimizu
- Department of Pathology (Analytic Human Pathology), Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|