1
|
Higuchi L, Ouchi N, Negishi Y, Naruo M, Kusano M, Suzuki S, Okuda T, Morita R. Ovariectomy-induced bone loss through inappropriate inflammatory response: an osteoimmunological perspective on postmenopausal osteoporosis. Immunol Med 2025:1-14. [PMID: 40377249 DOI: 10.1080/25785826.2025.2506870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/12/2025] [Indexed: 05/18/2025] Open
Abstract
Postmenopausal osteoporosis (PO) is a prevalent condition that significantly impairs the quality of life in elderly women. While traditionally attributed to estrogen deficiency, emerging evidence suggests that immune dysregulation plays a critical role in its pathogenesis. This study investigates the osteoimmunological mechanisms underlying PO using an ovariectomy (Ovx) mouse model. Our findings indicate that Ovx mice exhibit substantial reductions in bone mineral density and bone volume, accompanied by a marked suppression of interleukin-4 (IL-4) and interferon-gamma (IFN-γ) production, particularly from natural killer T (NKT) cells. Lipidomic analysis of bone marrow further revealed an upregulation of omega-6 fatty acids, contributing to an inflammatory microenvironment that promotes excessive osteoclast activation. Notably, administration of the glycolipid OCH restored cytokine production and mitigated bone loss in Ovx mice, suggesting its therapeutic potential. These findings highlight the complex interplay between immune responses and lipid metabolism in PO and propose novel therapeutic strategies aimed at modulating immune function to prevent bone loss. This study offers valuable insights into the osteoimmunological mechanisms of PO and underscores the potential of immunomodulatory approaches for its management.
Collapse
Affiliation(s)
- Lilika Higuchi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Nozomi Ouchi
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Munehiro Naruo
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
- Department of Orthopedic Surgery, Tomei Atsugi Hospital, Kanagawa, Japan
- Department of Orthopedic Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Maiko Kusano
- Department of Legal Medicine, Showa University, Tokyo, Japan
| | - Shunji Suzuki
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Takahisa Okuda
- Department of Legal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
2
|
Zhu L, Zhou C, Chen S, Huang D, Jiang Y, Lan Y, Zou S, Li Y. Osteoporosis and Alveolar Bone Health in Periodontitis Niche: A Predisposing Factors-Centered Review. Cells 2022; 11:3380. [PMID: 36359775 PMCID: PMC9657655 DOI: 10.3390/cells11213380] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a periodontal inflammatory condition that results from disrupted periodontal host-microbe homeostasis, manifested by the destruction of tooth-supporting structures, especially inflammatory alveolar bone loss. Osteoporosis is characterized by systemic deterioration of bone mass and microarchitecture. The roles of many systemic factors have been identified in the pathogenesis of osteoporosis, including endocrine change, metabolic disorders, health-impaired behaviors and mental stress. The prevalence rate of osteoporotic fracture is in sustained elevation in the past decades. Recent studies suggest that individuals with concomitant osteoporosis are more vulnerable to periodontal impairment. Current reviews of worse periodontal status in the context of osteoporosis are limited, mainly centering on the impacts of menopausal and diabetic osteoporosis on periodontitis. Herein, this review article makes an effort to provide a comprehensive view of the relationship between osteoporosis and periodontitis, with a focus on clarifying how those risk factors in osteoporotic populations modify the alveolar bone homeostasis in the periodontitis niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Sengupta S, Nath R, Bhattacharjee A. Characterizing the effect of S-nitrosoglutathione on Saccharomyces cerevisiae: Upregulation of alcohol dehydrogenase and inactivation of aconitase. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Qian D, Zhou H, Fan P, Yu T, Patel A, O’Brien M, Wang Z, Lu S, Tong G, Shan Y, Wang L, Gao Y, Xiong Y, Zhang L, Wang X, Liu Y, Zhou S. A Traditional Chinese Medicine Plant Extract Prevents Alcohol-Induced Osteopenia. Front Pharmacol 2021; 12:754088. [PMID: 35002697 PMCID: PMC8730326 DOI: 10.3389/fphar.2021.754088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been practiced in the treatment of bone diseases and alcoholism. Chronic excessive alcohol use results in alcohol-induced bone diseases, including osteopenia and osteoporosis, which increases fracture risk, deficient bone repair, and osteonecrosis. This preclinical study investigated the therapeutic effects of TCM herbal extracts in animal models of chronic excessive alcohol consumption-induced osteopenia. TCM herbal extracts (Jing extracts) were prepared from nine Chinese herbal medicines, a combinative herbal formula for antifatigue and immune regulation, including Astragalus, Cistanche deserticola, Dioscorea polystachya, Lycium barbarum, Epimedium, Cinnamomum cassia, Syzygium aromaticum, Angelica sinensis, and Curculigo orchioides. In this study, Balb/c male mice were orally administrated alcohol (3.2 g/kg/day) with/without TCM herbal extracts (0.125 g/kg, 0.25 g/kg, or 0.5 g/kg) by gavage. Our results showed that after 50 days of oral administration, TCM herbal extracts prevented alcohol-induced osteopenia demonstrated by μ-CT bone morphological analysis in young adults and middle-aged/old Balb/c male mice. Biochemical analysis demonstrated that chronic alcohol consumption inhibits bone formation and has a neutral impact on bone resorption, suggesting that TCM herbal extracts (Jing extracts) mitigate the alcohol-induced abnormal bone metabolism in middle-aged/old male mice. Protocatechuic acid, a natural phenolic acid in Jing extracts, mitigates in vivo alcohol-induced decline of alkaline phosphatase (ALP) gene expression in the bone marrow of Balb/c male mice and in vitro ALP activity in pre-osteoblast MC3T3-E1 cells. Our study suggests that TCM herbal extracts prevent chronic excessive alcohol consumption-induced osteopenia in male mice, implying that traditional medicinal plants have the therapeutic potential of preventing alcohol-induced bone diseases.
Collapse
Affiliation(s)
- Dongyang Qian
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopedics, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhou
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Pan Fan
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Spine Center, Zhongda Hospital, Southeast University Medical School, Nanjing, China
| | - Tao Yu
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopedic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anish Patel
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Morgan O’Brien
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Zhe Wang
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Shiguang Lu
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Guoqiang Tong
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Yimin Shan
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Lei Wang
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, China
| | - Yuan Xiong
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lily Zhang
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuancai Liu
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
- *Correspondence: Shuanhu Zhou, , ; Yuancai Liu,
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
- *Correspondence: Shuanhu Zhou, , ; Yuancai Liu,
| |
Collapse
|
5
|
Matsumoto T, Miyake K, Miyake N, Iijima O, Adachi K, Narisawa S, Millán JL, Orimo H, Shimada T. Treatment with bone maturation and average lifespan of HPP model mice by AAV8-mediated neonatal gene therapy via single muscle injection. Mol Ther Methods Clin Dev 2021; 22:330-337. [PMID: 34514025 PMCID: PMC8408425 DOI: 10.1016/j.omtm.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/04/2021] [Indexed: 11/24/2022]
Abstract
Hypophosphatasia (HPP) is an inherited skeletal disease characterized by defective bone and tooth mineralization due to a deficiency in tissue-nonspecific alkaline phosphatase (TNALP). Patients with the severe infantile form of HPP may appear normal at birth, but their prognosis is very poor. To develop a practical gene therapy for HPP, we endeavored to phenotypically correct TNALP knockout (Akp2 -/- ) mice through adeno-associated virus type 8 (AAV8) vector-mediated, muscle-directed, TNALP expression. Following treatment of neonatal Akp2 -/- mice with a single intramuscular injection of ARU-2801 (AAV8-TNALP-D10-vector) at 1.0 × 1012 vector genomes/body, high plasma ALP levels (19.38 ± 5.02 U/mL) were detected for up to 18 months, and computed tomography analysis showed mature bone mineralization. Histochemical staining for ALP activity in the knee joint revealed ALP activity on the surface of the endosteal bone of mice. Throughout their lives, the surviving treated Akp2 -/- mice exhibited normal physical activity and a healthy appearance, whereas untreated controls died within 3 weeks. No ectopic calcification or abnormal calcium metabolism was detected in the treated mice. These findings suggest that ARU-2801-mediated neonatal intramuscular gene therapy is both safe and effective, and that this strategy could be a practical option for treatment of the severe infantile form of HPP.
Collapse
Affiliation(s)
- Tae Matsumoto
- Department of Gene Therapy, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
- Department of Pediatrics, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Koichi Miyake
- Department of Gene Therapy, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Noriko Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Osamu Iijima
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Kumi Adachi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Sonoko Narisawa
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - José Luis Millán
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hideo Orimo
- Department of Metabolism and Nutrition, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Takashi Shimada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
6
|
Naruo M, Negishi Y, Okuda T, Katsuyama M, Okazaki K, Morita R. Alcohol consumption induces murine osteoporosis by downregulation of natural killer T-like cell activity. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1370-1382. [PMID: 34214248 PMCID: PMC8589379 DOI: 10.1002/iid3.485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Introduction Chronic alcohol consumption (CAC) can induce several deleterious effects on the body, including the promotion of osteoporosis; however, the immunological mechanism underlying alcohol‐induced osteoporosis is still unclear. Methods We administered alcohol to mice for 4 weeks as the experimental CAC model and analyzed the bone and immune cells that are located in the vicinity of a bone. Results IL‐4 is known to be a suppressive factor for osteoclastogenesis, and we found that natural killer T (NKT)‐like cells, which showed NK1.1‐positive, CD3‐positive, and α‐galactosylceramide‐loaded CD1d tetramer‐negative, produced IL‐4 more effectively than CD4+ T and natural killer (NK) cells. The alcohol consumption facilitated a significant decrease of bone mineral density with the upregulation of nuclear factor of activated T cells 1 and receptor activator of NF‐κB ligand expression. Meanwhile, we confirmed that alcohol consumption suppressed the activity of antigen‐presenting cells (APCs) and NKT‐like cells, leading to decreased IL‐4 secretion. Moreover, these harmful effects of alcohol consumption were reduced by simultaneous treatment with a glycolipid antigen OCH. Conclusions Our results indicate that the inactivation of innate immune cells, APCs, and NKT‐like cells are likely to be crucial for alcohol‐induced osteoporosis and provide a new therapeutic approach for preventing osteoporosis.
Collapse
Affiliation(s)
- Munehiro Naruo
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.,Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan.,Department of Orthopaedic Surgery, Tomei Atsugi Hospital, Kanagawa, Japan
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Takahisa Okuda
- Department of Legal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Midori Katsuyama
- Department of Legal Medicine Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
7
|
Hu Y, Fu Y, Jin S, Fu H, Qiao H, Zhang W, Jiang S, Gong Y, Xiong Y, Wu Y, Wang Y, Xu L. Comparative transcriptome analysis of lethality in response to RNA interference of the oriental river prawn (Macrobrachium nipponense). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100802. [PMID: 33578185 DOI: 10.1016/j.cbd.2021.100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022]
Abstract
A previous study identified slow-tonic S2 tropomyosin and slow tropomyosin isoform as sex-related genes in Macrobrachium nipponense. Their functions were analyzed using RNA interference. However, more than half of the specimens died approximately 8-12 h after injection of the respective double-stranded RNAs (dsRNAs), and HE staining indicated that the heart and gills were the most likely tissues responsible for the resultant deaths. In the current study, we conducted a comparative transcriptomic study of the gills and hearts of M. nipponense to identify potential target genes associated with acute death after dsRNA injection. A total of 68,772 annotated unigenes were generated. In the heart, differentially expressed genes (DEGs) were mainly enriched in glycolysis/gluconeogenesis and oxidative phosphorylation, while the most relevant pathways in the gills were lysosome, phagosome, and peroxisome. Ten DEGs were screened out and analyzed under lethal hypoxic stress. Among these, fructose 1, 6-biphosphate-aldolase (FBA), glyceraldehyde 3-phosphate dehydrogenase (GDPDH), alcohol dehydrogenase class-3 (ADC3), ATP-synthase subunit 9 (ATPS9), and acid ceramidase-like (ACL) were all differentially expressed under hypoxic conditions. This study shed light on the lethal mechanism caused by interference with tropomyosin genes in M. nipponense, and identifies the related pathways and key genes that could help to improve stress resistance and tolerance in M. nipponense.
Collapse
Affiliation(s)
- Yuning Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China.
| | - Yin Fu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yabing Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China.
| | - Lei Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China.
| |
Collapse
|