1
|
Alanazi AZ, Alhazzani K, Ibrahim H, Mostafa AM, Barker J, Mahmoud AM, El-Wekil MM, Bellah H Ali AM. pH-Sensitive blue and red N-CDs for L-asparaginase quantification in complex biological matrices. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125161. [PMID: 39316858 DOI: 10.1016/j.saa.2024.125161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
A novel fluorometric method for the determination of L-asparaginase, an enzyme crucial in cancer therapy and food industry applications, is presented. This sensitive and selective approach utilizes L-asparagine and two pH-sensitive carbon dots (blue-N-CDs and red-N-CDs) as probes. The interaction between L-asparagine and L-asparaginase liberates ammonia, causing an increase in pH. This pH change simultaneously decreases the fluorescence of blue-N-CDs while enhancing the emission of red-N-CDs, enabling ratiometric detection of L-asparaginase. Comprehensive characterization of both carbon dots and investigation of their response mechanism towards L-asparaginase were conducted using ultraviolet-visible spectrophotometry, fluorescence spectroscopy, and transmission electron microscopy (TEM) imaging techniques. The designed approach demonstrates outstanding linearity (20 to 2000 U L-1) and a low detection limit (6.95 U L-1) for L-asparaginase quantification. Moreover, when tested to human serum samples, the detection system exhibits outstanding selectivity and high recovery rates (96.15% to 99.75%) with low standard deviation, underscoring its suitability for practical implementation in clinical diagnostics.
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hossieny Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; School of Biotechnology, Badr University in Assiut, Assiut 2014101, Egypt
| | - Aya M Mostafa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt; School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston-upon-Thames, London KT1 2EE, UK
| | - James Barker
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston-upon-Thames, London KT1 2EE, UK
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
2
|
Tan YQ, Loh CK, Mohd Saffian S, Makpol S. Improved HPLC method with automated pre-column sample derivatisation for serum pegylated L-asparaginase activity measurement in paediatric acute lymphoblastic leukaemia patients. J Pharm Biomed Anal 2024; 247:116243. [PMID: 38843612 DOI: 10.1016/j.jpba.2024.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/19/2024]
Abstract
Therapeutic drug monitoring of pegylated L-asparaginase (ASNase) ensures the drug effectiveness in childhood acute lymphoblastic leukaemia (ALL) patients. The biological drug property with variable immunogenic host clearance, and the prescription of its generic formulation urge the need for a reliable assay to ensure an optimal treatment and improve outcome. This study aimed to optimise an existing isocratic reversed-phase high performance liquid chromatography (RP-HPLC) method with an automated pre-column sample derivatisation and injection program, and a computational algorithm for measuring serum pegylated ASNase activity in children with ALL. Nath et al.'s method in 2009 was adopted and modified using a pegylated ASNase. A set of Microsoft Excel macros was developed for the serum drug activity computation. An Agilent InfinityLab LC Series 1260 Infinity II Quaternary System with fluorescence detection was employed with an Agilent Poroshell 120 EC-C18 4.6×100 mm, 2.7 µm analytical column. System flow rate was optimised to 2.0 mL/min with 40×10-6/bar pump compressibility. The O-phthaldialdehyde (OPA) solution composition was optimised to 1 % o-phthaldialdehyde, 0.8 % 2-mercaptoethanol, 7.13 % methanol, and 1.81 % sodium tetraborate. The pre-column derivatisation program mixed 0.1 µL sample with 25 µL OPA solution before the automated injection. Method validation was according to the ICH guidelines. Total analysis time was 15 min, with L-aspartic acid eluted at 0.96 min and internal standard at 4.7 min. The calibration curves showed excellent linearity (R ≥0.9999). Interday precision for the drug activity at 0.1 IU/mL, 0.5 IU/mL, and 1 IU/mL were 4.15 %, 3.05 %, and 3.09 % (n = 6). Mean %error for the drug activity at 0.1 IU/mL, 0.5 IU/mL, and 1 IU/mL were 0.90±4.41 %, -1.37±3.04 %, and -3.03±3.02 % (n = 6). Limit of quantitation was 0.03 IU/mL. Majority of the patients' serum drug activity fell within the assay calibration range. Our improved method is automated, having shorter analysis time with a well-maintained separation resolution that enables a high-throughput analysis for application.
Collapse
Affiliation(s)
- Yan Qi Tan
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, Hospital Pakar Kanak-kanak UKM, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - C-Khai Loh
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, Hospital Pakar Kanak-kanak UKM, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia.
| | - Shamin Mohd Saffian
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Metabolites Profiling and In Vitro Biological Characterization of Different Fractions of Cliona sp. Marine Sponge from the Red Sea Egypt. Molecules 2023; 28:molecules28041643. [PMID: 36838631 PMCID: PMC9966995 DOI: 10.3390/molecules28041643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Red Sea marine sponges are an important source of biologically active natural products. Therefore, the present study aimed to investigate, for the first time, the components of n-hexane, dichloromethane, and ethyl acetate fractions of Cliona sp. marine sponge collected from the Red Sea, Egypt using UPLC-ESI-MS/MS (Ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry) analysis. The analysis revealed the tentative identification of 23, 16, and 24 compounds from the n-hexane, dichloromethane, and ethyl acetate fractions of Cliona sp., respectively. In addition, the examination of these fractions resulted in the isolation and identification of three sterols and one amino acid. The identification of the isolated compounds was confirmed by 1D and 2D NMR (Nuclear Magnetic Resonance), and MS (Mass spectrometry), and IR (Infrared) spectroscopy. The in vitro cytotoxic, antioxidant, and antimicrobial activities of the total ethanolic extract and its sub-fractions were also evaluated. Interestingly, the ethyl acetate fraction showed potent cytotoxic activity against colon (HCT-116) and human larynx carcinoma (HEP-2) cell lines with IC50 (Half-maximal Inhibitory Concentration) 6.11 ± 0.2 and 12.6 ± 0.9 µg/mL, respectively. However, the dichloromethane fraction showed strong antioxidant activity, with IC50 75.53 ± 3.41 µg/mL. Notably, the total ethanolic extract showed the strongest antibacterial activity against Staphylococcus aureus and Escherichia coli, with MIC (Minimum Inhibitory Concentration) 62.5 ± 0.82 and 125 ± 0.62 µg/mL, respectively, compared to other fractions. In conclusion, this is the first report on the secondary metabolites content and biological activities of Cliona sp. from the Red Sea, Egypt. It also highlights the need for further research on the most active fractions against various cancer cell lines and resistant bacterial and fungal strains. Cliona sp. extract and its fractions could be a potential source of novel and safe natural drugs with a wide range of medicinal and pharmaceutical applications.
Collapse
|
4
|
Cao S, Hu M, Yang L, Li M, Shi Z, Cheng W, Zhang Y, Chen F, Wang S, Zhang Q. Chemical Constituent Analysis of Ranunculus Sceleratus L. Using Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole-Orbitrap High-Resolution Mass Spectrometry. Molecules 2022; 27:molecules27103299. [PMID: 35630779 PMCID: PMC9145087 DOI: 10.3390/molecules27103299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Ranunculus sceleratus L.(RS) has shown various pharmacological effects in traditional Chinese medicine. In our previous study, the positive therapeutic effect on α-naphthylisothiocyanate induced intrahepatic cholestasis in rats was obtained using TianJiu treatment with fresh RS. However, the chemical profile of RS has not been clearly clarified, which impedes the research progress on the therapeutic effect of RS. Herein, an ultra-high performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) method was developed to rapidly separate and identify multiple constituents in the 80% methanol extract of RS. A total of sixty-nine compounds (19 flavonoids, 22 organic acids, 6 coumarins, 4 lignans, 14 nitrogenous compounds, and 4 anthraquinones) were successfully characterized. A total of 12 of these compounds were unambiguously identified by standard samples. Their mass spectrometric fragmentation pathways were investigated. It is worth noting that flavonoids and lignans were identified for the first time in RS. In this study, we successfully provide the first comprehensive report on identifying major chemical constituents in RS by UHPLC-Q-Orbitrap HRMS. The obtained results enrich the RS chemical profile, paving the way for further phytochemical study, quality control, and pharmacological investigation of RS.
Collapse
Affiliation(s)
- Shanshan Cao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
| | - Min Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
| | - Lingli Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
| | - Meiqin Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
| | - Zhen Shi
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
| | - Wenming Cheng
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
- Correspondence: (W.C.); (Q.Z.)
| | - Yazhong Zhang
- Anhui Institute for Food and Drug Control, Hefei 230051, China;
| | - Fei Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Hefei 230032, China;
| | - Qunlin Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
- Correspondence: (W.C.); (Q.Z.)
| |
Collapse
|
5
|
Barros RAM, Cristóvão RO, Carabineiro SAC, Neves MC, Freire MG, Faria JL, Santos-Ebinuma VC, Tavares APM, Silva CG. Immobilization and Characterization of L-Asparaginase over Carbon Xerogels. BIOTECH 2022; 11:biotech11020010. [PMID: 35822783 PMCID: PMC9264400 DOI: 10.3390/biotech11020010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
L-asparaginase (ASNase) is an aminohydrolase currently used in the pharmaceutical and food industries. Enzyme immobilization is an exciting option for both applications, allowing for a more straightforward recovery and increased stability. High surface area and customizable porosity make carbon xerogels (CXs) promising materials for ASNase immobilization. This work describes the influence of contact time, pH, and ASNase concentration on the immobilization yield (IY) and relative recovered activity (RRA) using the Central Composite Design methodology. The most promising results were obtained using CX with an average pore size of 4 nm (CX-4), reaching IY and RRA of 100%. At the optimal conditions (contact time 49 min, pH 6.73, and [ASNase] 0.26 mg·mL−1), the ASNase-CXs biocomposite was characterized and evaluated in terms of kinetic properties and operational, thermal, and pH stabilities. The immobilized ASNase onto CX-4 retained 71% of its original activity after six continuous reaction cycles, showed good thermal stability at 37 °C (RRA of 91% after 90 min), and was able to adapt to both acidic and alkaline environments. Finally, the results indicated a 3.9-fold increase in the immobilized ASNase affinity for the substrate, confirming the potential of CXs as a support for ASNase and as a cost-effective tool for subsequent use in the therapeutic and food sectors.
Collapse
Affiliation(s)
- Rita A. M. Barros
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (R.A.M.B.); (R.O.C.); (S.A.C.C.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Raquel O. Cristóvão
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (R.A.M.B.); (R.O.C.); (S.A.C.C.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Sónia A. C. Carabineiro
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (R.A.M.B.); (R.O.C.); (S.A.C.C.); (J.L.F.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Márcia C. Neves
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.N.); (M.G.F.)
| | - Mara G. Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.N.); (M.G.F.)
| | - Joaquim L. Faria
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (R.A.M.B.); (R.O.C.); (S.A.C.C.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Valéria C. Santos-Ebinuma
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, UNESP-University Estadual Paulista, Araraquara 14800-903, Brazil;
| | - Ana P. M. Tavares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.N.); (M.G.F.)
- Correspondence: (A.P.M.T.); (C.G.S.); Tel.: +351-234-401-520 (A.P.M.T.); +351-220-414-874 (C.G.S.)
| | - Cláudia G. Silva
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (R.A.M.B.); (R.O.C.); (S.A.C.C.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Correspondence: (A.P.M.T.); (C.G.S.); Tel.: +351-234-401-520 (A.P.M.T.); +351-220-414-874 (C.G.S.)
| |
Collapse
|
6
|
Çınar O, Duman O, Tunç S. Optimization and Validation of a New HPLC Method for the Determination of Asparagine Active Ingredient in Asparagus lycicus and Phytochemical Characterization of Endemic Asparagus lycicus Specie. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|