1
|
Al-Shamarti MJ. Activity Assessment of Antibiotics Used Against Different Bacterial Etiological Agents of UTI in Najaf, Iraq. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:348-354. [PMID: 39687449 PMCID: PMC11646199 DOI: 10.30699/ijp.2024.2027209.3293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 12/18/2024]
Abstract
Background & Objective Antibiotic resistance in urinary tract infection (UTI) is increasing nowadays, therefore, the aim of this study was to evaluate the resistance patterns of many pathogens toward several antibiotics that are in common use in our hospitals. Methods Subculture and identification of pathogenic bacteria were performed on 1148 hospitals' bacterial primary cultures which were considered positive for UTI. An antibiotic sensitivity test was performed by using the disc diffusion method. The rates of resistance were statistically analyzed and correlated with the types of antibiotics and bacteria. Results It was found that 1148 out of 2087 urine samples were UTI positive, the majority of cases (76%) were from females (P<0.0001). Escherichia coli and Klebsiella were the most isolated Gram-negative bacteria, while Staphylococcus spp. was the most isolated Gram-positive pathogen. E. coli showed the highest resistance rate among all bacteria, while Streptococcus spp. was the most sensitive. The highest resistance was noticed to be against gentamicin and ampicillin, while the most effective drugs were imipenem and amikacin. There was a significant difference in resistance rates among the different bacterial categories (P<0.0001), while no significant difference was noticed in resistance rates among antibiotics categories (P>0.05). Conclusion Elevated rates of antibiotic resistance were noticed in this study in UTI-causing bacteria; therefore, it is highly important at least to every general hospital to investigate the antibiotic resistance rates occasionally to determine the proper antimicrobial treatment as well as re-evaluate antibiotics which were considered as empirical.
Collapse
|
2
|
Sundaresan AK, Gangwar J, Murugavel A, Malli Mohan GB, Ramakrishnan J. Complete genome sequence, phenotypic correlation and pangenome analysis of uropathogenic Klebsiella spp. AMB Express 2024; 14:78. [PMID: 38965152 PMCID: PMC11224175 DOI: 10.1186/s13568-024-01737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Urinary tract infections (UTI) by antibiotic resistant and virulent K. pneumoniae are a growing concern. Understanding the genome and validating the genomic profile along with pangenome analysis will facilitate surveillance of high-risk clones of K. pneumoniae to underpin management strategies toward early detection. The present study aims to correlate resistome with phenotypic antimicrobial resistance and virulome with pathogenicity in Klebsiella spp. The present study aimed to perform complete genome sequences of Klebsiella spp. and to analyse the correlation of resistome with phenotypic antimicrobial resistance and virulome with pathogenicity. To understand the resistome, pangenome and virulome in the Klebsiella spp, the ResFinder, CARD, IS Finder, PlasmidFinder, PHASTER, Roary, VFDB were used. The phenotypic susceptibility profiling identified the uropathogenic kp3 to exhibit multi drug resistance. The resistome and in vitro antimicrobial profiling showed concordance with all the tested antibiotics against the study strains. Hypermucoviscosity was not observed for any of the test isolates; this phenotypic character matches perfectly with the absence of rmpA and magA genes. To the best of our knowledge, this is the first report on the presence of ste, stf, stc and sti major fimbrial operons of Salmonella enterica serotype Typhimurium in K. pneumoniae genome. The study identifies the discordance of virulome and virulence in Klebsiella spp. The complete genome analysis and phenotypic correlation identify uropathogenic K. pneumoniae kp3 as a carbapenem-resistant and virulent pathogen. The Pangenome of K. pneumoniae was open suggesting high genetic diversity. Diverse K serotypes were observed. Sequence typing reveals the prevalence of K. pneumoniae high-risk clones in UTI catheterised patients. The study also highlights the concordance of resistome and in vitro susceptibility tests. Importantly, the study identifies the necessity of virulome and phenotypic virulence markers for timely diagnosis and immediate treatment for the management of high-risk K. pneumoniae clones.
Collapse
Affiliation(s)
- Abhirami Krishnamoorthy Sundaresan
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| | - Jaya Gangwar
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| | - Aravind Murugavel
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| | - Ganesh Babu Malli Mohan
- Microbial Omics Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Georgia, Athens, United States of America
| | - Jayapradha Ramakrishnan
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
3
|
Deb A, Gogoi M, Mandal TK, Sinha S, Pattader PSG. Specific Instantaneous Detection of Klebsiella pneumoniae for UTI Diagnosis with a Plasmonic Gold Nanoparticle Conjugated Aptasensor. ACS APPLIED BIO MATERIALS 2023; 6:3309-3318. [PMID: 37437266 DOI: 10.1021/acsabm.3c00369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Urinary tract infection (UTI), which can be caused by various pathogens, if not detected at an early stage can be fatal. It is essential to identify the specific pathogen responsible for UTI for appropriate treatment. This study describes a generic approach to the fabrication of a prototype for the noninvasive detection of a specific pathogen using a tailor-made plasmonic aptamer-gold nanoparticle (AuNP) assay. The assay is advantageous because the adsorbed specific aptamers passivate the nanoparticle surfaces and reduce and/or eliminate false-positive responses to nontarget analytes. Based on the localized surface plasmon resonance (LSPR) phenomena of AuNP, a point-of-care aptasensor was designed that shows specific changes in the absorbance in the visible spectra in the presence of a target pathogen for robust and fast screening of UTI samples. In this study, we demonstrate the specific detection of Klebsiella pneumoniae bacteria with LoD as low as 3.4 × 103 CFU/mL.
Collapse
Affiliation(s)
- Aniruddha Deb
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mousumi Gogoi
- Altanostics Lab Private Limited, IIT Research Park, IIT Guwahati, Guwahati, Assam 781039, India
| | - Tapas K Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Science & Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Swapnil Sinha
- Altanostics Lab Private Limited, IIT Research Park, IIT Guwahati, Guwahati, Assam 781039, India
| | - Partho Sarathi Gooh Pattader
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Science & Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
4
|
Conserved FimK Truncation Coincides with Increased Expression of Type 3 Fimbriae and Cultured Bladder Epithelial Cell Association in Klebsiella quasipneumoniae. J Bacteriol 2022; 204:e0017222. [PMID: 36005809 PMCID: PMC9487511 DOI: 10.1128/jb.00172-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella spp. commonly cause both uncomplicated urinary tract infection (UTI) and recurrent UTI (rUTI). Klebsiella quasipneumoniae, a relatively newly defined species of Klebsiella, has been shown to be metabolically distinct from Klebsiella pneumoniae, but its type 1 and type 3 fimbriae have not been studied. K. pneumoniae uses both type 1 and type 3 fimbriae to attach to host epithelial cells. The type 1 fimbrial operon is well conserved between Escherichia coli and K. pneumoniae apart from fimK, which is unique to Klebsiella spp. FimK contains an N-terminal DNA binding domain and a C-terminal phosphodiesterase (PDE) domain that has been hypothesized to cross-regulate type 3 fimbriae expression via modulation of cellular levels of cyclic di-GMP. Here, we find that a conserved premature stop codon in K. quasipneumoniae fimK results in truncation of the C-terminal PDE domain and that K quasipneumoniae strain KqPF9 cultured bladder epithelial cell association and invasion are dependent on type 3 but not type 1 fimbriae. Further, we show that basal expression of both type 1 and type 3 fimbrial operons as well as cultured bladder epithelial cell association is elevated in KqPF9 relative to uropathogenic K. pneumoniae TOP52. Finally, we show that complementation of KqPF9ΔfimK with the TOP52 fimK allele reduced type 3 fimbrial expression and cultured bladder epithelial cell attachment. Taken together these data suggest that the C-terminal PDE of FimK can modulate type 3 fimbrial expression in K. pneumoniae and its absence in K. quasipneumoniae may lead to a loss of type 3 fimbrial cross-regulation. IMPORTANCE K. quasipneumoniae is often indicated as the cause of opportunistic infections, including urinary tract infection, which affects >50% of women worldwide. However, the virulence factors of K. quasipneumoniae remain uninvestigated. Prior to this work, K. quasipneumoniae and K. pneumoniae had only been distinguished phenotypically by metabolic differences. This work contributes to the understanding of K. quasipneumoniae by evaluating the contribution of type 1 and type 3 fimbriae, which are critical colonization factors encoded by all Klebsiella spp., to K. quasipneumoniae bladder epithelial cell attachment in vitro. We observe clear differences in bladder epithelial cell attachment and regulation of type 3 fimbriae between uropathogenic K. pneumoniae and K. quasipneumoniae that coincide with a structural difference in the fimbrial regulatory gene fimK.
Collapse
|
5
|
Characterization of Hypervirulent Klebsiella pneumoniae (Hv-Kp): Correlation of Virulence with Antimicrobial Susceptibility. Int J Microbiol 2022; 2022:4532707. [PMID: 36032181 PMCID: PMC9410983 DOI: 10.1155/2022/4532707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Hypervirulent K. pneumoniae (Hv-Kp) is an emerging variant of classical K. pneumoniae (C-Kp) that exhibits hypermucoviscocity and possesses multiple siderophores as virulence factors and is known to cause serious debilitating infections in immunocompetent individuals. Aim and objective. The aim of this study is to identify C-Kp and Hv-Kp strains and detect their virulence factors and antimicrobial susceptibility patterns. Materials and Methods A total of 129 K. pneumoniae isolates from different clinical samples were used for the identification and differentiation of classical K. pneumoniae (C-Kp) and hypervirulent K. pneumoniae (Hv-Kp) to correlate their virulence with antimicrobial susceptibility patterns and identify their risk factors. Hypermucoviscosity was determined by a string test (>5 mm of string length). The aerobactin gene was detected by PCR. Results and Conclusion. In total, 13.9% (18/129) were Hv-Kp and 86.1% (111/129) were C-Kp. Only 50% (9/18) of the Hv-Kp isolates were hypermucoviscous. C-Kp was significantly more resistant to antimicrobials than Hv-Kp. Among C-Kp, 75.7% were ESBL producers and 76.6% were multidrug resistant while in Hv-Kp, 44.44% were both ESBL producers and multidrug-resistant which is statistically significant (P < 0.01). Diabetes was a common risk factor for C-Kp infections whereas, respiratory disorders like COPD and prolonged ICU stay were the risk factors for Hv-Kp infections. The mortality rate among patients with Hv-Kp infections (87.5%) was significantly high when compared to that of C-Kp infections (35.7%) (P < 0.001). A majority of hypermucoviscous K. pneumoniae isolates were multidrug resistant (65.2%). Although the prevalence of Hv-Kp infections was low, a high percentage of them were multidrug resistant with a significantly high mortality rate. Hence, it is important to efficiently identify Hv-Kp strains from clinical samples and determine their antimicrobial susceptibility patterns, so as to provide immediate and effective treatment and to prevent possible outbreaks.
Collapse
|
6
|
Complete Genome Sequences of Three Uropathogenic Klebsiella quasipneumoniae Strains Isolated from Postmenopausal Women with Recurrent Urinary Tract Infection. Microbiol Resour Announc 2021; 10:10/11/e00073-21. [PMID: 33737357 PMCID: PMC7975875 DOI: 10.1128/mra.00073-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recurrent urinary tract infection (rUTI) poses a major health issue, especially among postmenopausal women. We report complete genome sequences of three Klebsiella quasipneumoniae strains isolated from the urine of postmenopausal women with rUTI. K. quasipneumoniae is a recently identified Klebsiella species with clinical and virulence characteristics distinct from K. pneumoniae. Recurrent urinary tract infection (rUTI) poses a major health issue, especially among postmenopausal women. We report complete genome sequences of three Klebsiella quasipneumoniae strains isolated from the urine of postmenopausal women with rUTI. K. quasipneumoniae is a recently identified Klebsiella species with clinical and virulence characteristics distinct from those of K. pneumoniae.
Collapse
|
7
|
Chávez-Reyes J, Escárcega-González CE, Chavira-Suárez E, León-Buitimea A, Vázquez-León P, Morones-Ramírez JR, Villalón CM, Quintanar-Stephano A, Marichal-Cancino BA. Susceptibility for Some Infectious Diseases in Patients With Diabetes: The Key Role of Glycemia. Front Public Health 2021; 9:559595. [PMID: 33665182 PMCID: PMC7921169 DOI: 10.3389/fpubh.2021.559595] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Uncontrolled diabetes results in several metabolic alterations including hyperglycemia. Indeed, several preclinical and clinical studies have suggested that this condition may induce susceptibility and the development of more aggressive infectious diseases, especially those caused by some bacteria (including Chlamydophila pneumoniae, Haemophilus influenzae, and Streptococcus pneumoniae, among others) and viruses [such as coronavirus 2 (CoV2), Influenza A virus, Hepatitis B, etc.]. Although the precise mechanisms that link glycemia to the exacerbated infections remain elusive, hyperglycemia is known to induce a wide array of changes in the immune system activity, including alterations in: (i) the microenvironment of immune cells (e.g., pH, blood viscosity and other biochemical parameters); (ii) the supply of energy to infectious bacteria; (iii) the inflammatory response; and (iv) oxidative stress as a result of bacterial proliferative metabolism. Consistent with this evidence, some bacterial infections are typical (and/or have a worse prognosis) in patients with hypercaloric diets and a stressful lifestyle (conditions that promote hyperglycemic episodes). On this basis, the present review is particularly focused on: (i) the role of diabetes in the development of some bacterial and viral infections by analyzing preclinical and clinical findings; (ii) discussing the possible mechanisms by which hyperglycemia may increase the susceptibility for developing infections; and (iii) further understanding the impact of hyperglycemia on the immune system.
Collapse
Affiliation(s)
- Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Carlos E Escárcega-González
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Erika Chavira-Suárez
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - José R Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico
| | - Andrés Quintanar-Stephano
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
8
|
Shankar M, Narasimhappa S, N S M. Urinary Tract Infection in Chronic Kidney Disease Population: A Clinical Observational Study. Cureus 2021; 13:e12486. [PMID: 33564501 PMCID: PMC7861116 DOI: 10.7759/cureus.12486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Chronic kidney disease (CKD) is a state of chronic inflammation. Chronic inflammation weakens the body's immune response to infections. Hence, CKD patients are at an increased risk of infections. Urinary tract infection (UTI) is one of the most common types of community-acquired infection. There is a paucity of data with respect to UTI in CKD patients. Hence, our objective was to study the clinical and microbiological profile of UTI in CKD patients. Materials and methods We studied 129 CKD patients at a tertiary care hospital in south India from January 2020 to June 2020. Patients who fulfilled the inclusion criteria were included in the study. Urine samples were cultured aseptically. Only urine-culture positive samples were included in the study and antibiotic susceptibility was recorded. Results Males (76.2%) were most commonly infected. 94% were gram-negative bacteria, 3% were gram-positive bacteria and 3% were Candida species. E. coli (61.8%) was the most common isolated microorganism. Resistance to quinolones was recorded among gram-negative bacteria. Resistance to penicillin and quinolones was noted among gram-positive bacteria. Candida species were sensitive to amphotericin B and fluconazole. Conclusion The results of the study help in formulating the empiric antibiotic policy to treat UTI in CKD patients and hence prevent inadvertent use of antibiotics and the emergence of antibiotic resistance.
Collapse
Affiliation(s)
| | | | - Madhura N S
- Biochemistry, Institute of Nephro-Urology, Bengaluru, IND
| |
Collapse
|
9
|
Gad El-Rab SMF, Abo-Amer AE, Asiri AM. Biogenic Synthesis of ZnO Nanoparticles and Its Potential Use as Antimicrobial Agent Against Multidrug-Resistant Pathogens. Curr Microbiol 2020; 77:1767-1779. [PMID: 32328748 DOI: 10.1007/s00284-020-01991-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/10/2020] [Indexed: 11/30/2022]
Abstract
In case of Escherichia coli and Klebsiella pneumoniae infection, the increased prominence of multidrug-resistance strains has become the greatest challenge in the urinary tract disease treatment. Therefore, the 16S rRNA sequencing of multidrug-resistant strains was performed, in addition to those of plasmids and genes responsible for multidrug resistance. These strains showed containing responsible genes Sulfonamides sul1, Tetracycline Tet(A), Tetracycline Tet(B), chloramphenicol catA1, β-lactams blaSHV, and cmlA. Also, the strains demonstrated resistance to at least 10 types of antibiotics or more due to carrying various plasmids. For increasing the level of public health in daily life and treatment of multidrug-resistant bacteria, the nanomedicine was employed. Consequently, ZnO nanoparticles (ZnONPs-E) were synthesized by employing supernatant of Escherichia hermannii strain isolated from raw milk source. The E. hermannii strain produces high concentration of ZnONPs-E compared to other strains so we used it in this study. This ZnONPs-E has a minimal inhibitory concentration (MIC) ranged from the concentration 10 μg/ml to 40 μg/ml against E. coli and K. pneumoniae, respectively. The antimicrobial efficiency of ZnONPs-E was 40 µg/ml and it was superior to the reported values in literature. Moreover, SEM results evident for distorted membrane morphology, blebbing of membrane, cell elongation, and leakage of cellular contents due to ZnONPs-E activity against tested bacteria. These results indicated that the ZnONPs-E exhibited interesting antimicrobial activity against pathogenic extended-spectrum β-lactamases (ESBLs) strains. The present study revealed that the active components entered in biosynthesis of ZnONPs-E pave the way to lead its effective nano-medical and drug delivery applications.
Collapse
Affiliation(s)
- Sanaa M F Gad El-Rab
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 888, Taif, 21974, Saudi Arabia.
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Aly E Abo-Amer
- Division of Microbiology, Department of Biology, Faculty of Science, University of Taif, P.O. Box 888, Taif, 21974, Saudi Arabia
- Division of Microbiology, Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohâg, 82524, Egypt
| | - Ahlam M Asiri
- Division of Microbiology, Department of Biology, Faculty of Science, University of Taif, P.O. Box 888, Taif, 21974, Saudi Arabia
| |
Collapse
|
10
|
Khalil GM, El-Balat I, Zeid AA, Al-Mohamma AR, Enan G. Prevalence, Characterization and Inhibition by Probiotics of Multidrug Resistant Bacteria Isolated from Renal Failure Patients Undergoing Hemodialysis. JOURNAL OF MEDICAL SCIENCES 2019. [DOI: 10.3923/jms.2020.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Complete Genome Sequences of Lytic Polysaccharide-Degrading Klebsiella pneumoniae Bacteriophages vB_KpnS_FZ10, vB_KpnP_FZ12, vB_KpnM_FZ14, and vB_KpnS_FZ41. Microbiol Resour Announc 2019; 8:8/39/e00914-19. [PMID: 31558632 PMCID: PMC6763647 DOI: 10.1128/mra.00914-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Klebsiella are among the leading microbial pathogens associated with nosocomial infection. At the same time, most nosocomial infections are caused by strains resistant to antibiotics. Here, we announce the complete genome sequences of four lytic polysaccharide-degrading bacteriophages, which will be used in complex therapeutic preparations.
Collapse
|