1
|
Liu L, Bai J, Wang J, Fan J, Yin D, Chang H, Hui X, Yang P. Benzylurea Protects hPDLFs Against LPS-Induced Mitochondrial Dysfunction Through MTCH2. Oral Dis 2025; 31:1255-1267. [PMID: 39491029 DOI: 10.1111/odi.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE The aim of this study is to explore the mechanism of benzylurea in the inflammatory injury of human periodontal ligament fibroblasts (hPDLFs). METHODS An inflammation model of hPDLFs was established using LPS. Nuclear transport of nuclear transcription factor-κB (NF-κB), secretion of cytokines, and the morphology and distribution of F-actin were determined. Mitochondrial function was assessed by measuring mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (mPTP), and reactive oxygen species (ROS) levels. The expression of mitochondrial carrier homolog 2 (MTCH2) and Cytochrome b5 type B (CYB5B) was detected. RESULTS Benzylurea alleviated the effects of lipopolysaccharide (LPS) on the proliferation and apoptosis of hPDLFs. It reduced the release of inflammatory cytokines and inhibited NF-κB nuclear translocation. Benzylurea improved mitochondrial function by regulating MMP and preventing excessive mPTP opening. Furthermore, LPS elevated the expression of MTCH2 and reduced the expression of CYB5B in hPDLFs. However, these effects can be inhibited by benzylurea. The altered expression of MTCH2 directly affected CYB5B expression, the release of inflammatory cytokines, and the activation of nuclear translocation of NF-κB. CONCLUSION CYB5B may act as an effector of MTCH2, with benzylurea enhancing mitochondrial function and protecting hPDLFs from LPS-induced injury through MTCH2.
Collapse
Affiliation(s)
- Li Liu
- Department of Stomatology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jing Bai
- Department of Stomatology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiyun Wang
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Junheng Fan
- Department of Stomatology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Dong Yin
- Department of Stomatology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Hong Chang
- School of Stomatology, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xuancheng Hui
- Department of Maxillofacial Surgery, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Pengfei Yang
- Center for Biomedical Engineering, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
2
|
Wei J, Fu D, Guo S, Tian T, Huang Y, Li Z, Wang L, Jin L, Ye W, Ren A, Yin S. Elementomics of 32 elements in cord serum depicts the risk of orofacial clefts: A case-control study in Shanxi, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125037. [PMID: 39341412 DOI: 10.1016/j.envpol.2024.125037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Maternal exposure to various metallic and non-metallic elements has been linked to the occurrence of orofacial clefts (OFCs), yet there remains a dearth of comprehensive research on the potential ramifications of simultaneous exposure to multiple elements. In this study, we investigated the individual and combined effects of element exposure on OFCs in a cohort of 168 pregnant women (49 cases and 119 controls) in the Shanxi province of northern China from 2010 to 2015. Cord serum samples were obtained from all participants to analyze the levels of 32 elements using inductively coupled plasma-mass spectrometry. The study examined the independent correlation between element concentrations and OFCs using two machine screening models, Boruta and Least Absolute Shrinkage and Selection Operator. Bayesian kernel machine regression (BKMR) was utilized to determine the combined effects of key exposure elements on OFCs and to clarify the interaction between exposed elements through the generalized additive model (GAM). The screening models identified lead (Pb), tin (Sn), iron (Fe), and cesium (Cs) as the most significant risk factors for OFC development in offspring. In the BKMR model, the probability of OFCs increased with higher overall levels of these risk elements, with Pb emerging as the primary contributor to the combined effect of the mixture. The findings of the GAM indicated that the combined exposure to Pb and Sn had a synergistic effect on the risk of developing OFCs. Analysis of elemental exposure in umbilical cord serum suggested that Pb exposure may have detrimental effects on OFC development in offspring, which may be further intensified by a synergistic interaction between Sn and Pb in the occurrence of OFCs.
Collapse
Affiliation(s)
- Jing Wei
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dezheng Fu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siyu Guo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tian Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, 100191, China; Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China
| | - Yun Huang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Weiping Ye
- Department of Obstetrics and Gynecology, Shanghai Putuo Maternity and Infant Hospital, 517 Tong Pu Road, Shanghai, 200062, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China; Department of Health Care Service and Management, College of Health Science and Technology, West Yunnan University of Applied Sciences, Dali, 671000, China.
| | - Shengju Yin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
3
|
da Silva RC, Teixeira MP, de Paiva LS, Miranda-Alves L. Environmental Health and Toxicology: Immunomodulation Promoted by Endocrine-Disrupting Chemical Tributyltin. TOXICS 2023; 11:696. [PMID: 37624201 PMCID: PMC10458372 DOI: 10.3390/toxics11080696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Tributyltin (TBT) is an environmental contaminant present on all continents, including Antarctica, with a potent biocidal action. Its use began to be intensified during the 1960s. It was effectively banned in 2003 but remains in the environment to this day due to several factors that increase its half-life and its misuse despite the bans. In addition to the endocrine-disrupting effect of TBT, which may lead to imposex induction in some invertebrate species, there are several studies that demonstrate that TBT also has an immunotoxic effect. The immunotoxic effects that have been observed experimentally in vertebrates using in vitro and in vivo models involve different mechanisms; mainly, there are alterations in the expression and/or secretion of cytokines. In this review, we summarize and update the literature on the impacts of TBT on the immune system, and we discuss issues that still need to be explored to fill the knowledge gaps regarding the impact of this endocrine-disrupting chemical on immune system homeostasis.
Collapse
Affiliation(s)
- Ricardo Correia da Silva
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.C.d.S.); (M.P.T.)
- Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mariana Pires Teixeira
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.C.d.S.); (M.P.T.)
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Luciana Souza de Paiva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói 24210-201, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.C.d.S.); (M.P.T.)
- Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
4
|
Yamaguchi M, Kashiwakura I. The Acute Radiation Syndrome-Mitigator Romiplostim and Secreted Extracellular Vesicles Improved Survival in Mice Acutely Exposed to Myelosuppressive Doses of Ionizing Radiation. Biomolecules 2023; 13:biom13050837. [PMID: 37238707 DOI: 10.3390/biom13050837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
In cases of accidental high-dose total-body irradiation (TBI), acute radiation syndrome (ARS) can cause death. We reported that the thrombopoietin receptor agonist romiplostim (RP) has the potential to completely rescue mice exposed to lethal TBI. Extracellular vesicles (EVs) are involved in cell-to-cell communication, and the mechanism of RP action may be related to EVs that reflect the radio-mitigative information. We investigated the radio-mitigative effects of EVs on mice with severe ARS. C57BL/6 mice exposed to lethal TBI were treated with RP, and the EVs were isolated from the serum and intraperitoneally injected into other mice with severe ARS. The 30-day survival rate of lethal TBI mice drastically improved by 50-100% with the administration of EVs in the sera collected weekly from the mice in which radiation damage was alleviated and mortality was avoided by the administration of RP. Four responsive miRNAs, namely, miR-144-5p, miR-3620-5p, miR-6354, and miR-7686-5p showed significant expression changes in an array analysis. In particular, miR-144-5p was expressed only in the EVs of RP-treated TBI mice. Specific EVs may exist in the circulating blood of mice that escaped mortality with an ARS mitigator, and their membrane surface and endogenous molecules may be the key to the survival of mice with severe ARS.
Collapse
Affiliation(s)
- Masaru Yamaguchi
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| | - Ikuo Kashiwakura
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| |
Collapse
|
5
|
Chen Y, Zhang Y, Li N, Jiang Z, Li X. Role of mitochondrial stress and the NLRP3 inflammasome in lung diseases. Inflamm Res 2023; 72:829-846. [PMID: 36905430 PMCID: PMC10007669 DOI: 10.1007/s00011-023-01712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND As an organelle essential for intracellular energy supply, mitochondria are involved in intracellular metabolism and inflammation, and cell death. The interaction of mitochondria with the NLRP3 inflammasome in the development of lung diseases has been extensively studied. However, the exact mechanism by which mitochondria mediate the activation of the NLRP3 inflammasome and trigger lung disease is still unclear. METHODS The literatures related to mitochondrial stress, NLRP3 inflammasome and lung diseases were searched in PubMed. RESULTS This review aims to provide new insights into the recently discovered mitochondrial regulation of the NLRP3 inflammasome in lung diseases. It also describes the crucial roles of mitochondrial autophagy, long noncoding RNA, micro RNA, altered mitochondrial membrane potential, cell membrane receptors, and ion channels in mitochondrial stress and regulation of the NLRP3 inflammasome, in addition to the reduction of mitochondrial stress by nuclear factor erythroid 2-related factor 2 (Nrf2). The effective components of potential drugs for the treatment of lung diseases under this mechanism are also summarized. CONCLUSION This review provides a resource for the discovery of new therapeutic mechanisms and suggests ideas for the development of new therapeutic drugs, thus promoting the rapid treatment of lung diseases.
Collapse
Affiliation(s)
- Yonghu Chen
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China
| | - Yuqi Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ning Li
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhe Jiang
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| | - Xuezheng Li
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| |
Collapse
|
6
|
Yuan P, Shen F, Zhang J, Ouyang S, Chen Y, Zou W, Zhou Q. Triclosan Reprograms Immunometabolism and Activates the Inflammasome in Human Macrophages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:428-439. [PMID: 36546883 DOI: 10.1021/acs.est.2c05254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To gather enough energy to respond to harmful stimuli, most immune cells quickly shift their metabolic profile. This process of immunometabolism plays a critical role in the regulation of immune cell function. Triclosan, a synthetic antibacterial component present in a wide range of consumer items, has been shown to cause immunotoxicity in a number of organisms. However, it is unclear whether and how triclosan impacts immunometabolism. Here, human macrophages were used as model cells to explore the modulatory effect of triclosan on immunometabolism. Untargeted metabolomics using integrated liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) revealed that triclosan changed the global metabolic profile of macrophages. Furthermore, Seahorse energy analysis and 13C isotope-based metabolic flux analysis revealed that triclosan decreased mitochondrial respiratory activity and promoted a metabolic transition from oxidative phosphorylation to glycolysis. Triclosan also polarizes macrophages to the proinflammatory M1 phenotype and activates the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing receptor 3 (NLRP3) inflammasome, which is consistent with triclosan-induced metabolic phenotypic modifications. Collectively, these findings showed that triclosan exposure at micromolar concentrations caused metabolic reprogramming in macrophages, which triggered an inflammatory response. These findings are important for understanding the immunotoxicity caused by triclosan, which is necessary for determining the risk posed by triclosan in the environment.
Collapse
Affiliation(s)
- Peng Yuan
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Fengge Shen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Junqiang Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuming Chen
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Martin NP, Jean Harry G. Imaging Inflammasome Activation in Microglia. Curr Protoc 2022; 2:e578. [PMID: 36286528 PMCID: PMC9614552 DOI: 10.1002/cpz1.578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inflammasomes are multiprotein complexes that play key roles in the host's innate immune response to insult. The assembly of an inflammatory complex is initiated with the oligomerization of the upstream inflammasome-forming sensor and then follows a well-orchestrated multi-step process leading to downstream effector functions that are critical in the innate immune response. The final assembly of these steps provides a detectable readout of inflammasome complex activation in the form of an apoptosis-associated speck-like protein containing a CARD (ASC) speck. Inflammasome activation-and the release of IL-1β and ASC specks from the microglia, the brain resident immune cell-have been implicated in various neurological and neurodegenerative disorders. Protocols exist for the generation of fluorescent inflammasome indicator peripheral macrophages. Building upon these protocols, we describe here a protocol that details the generation of fluorescent inflammasome indicator microglia cells using recombinant retroviruses to transduce murine BV-2 cells. In this protocol, the cells are established in a manner to allow for experimental control of the initial priming step of the inflammasome activation process. We then provide a series of steps for using these reporter cells within an inflammasome activation assay and use real-time imaging of ASC-speck formation as an indicator of inflammasome activation. In addition, we describe strategies for using these cells for examining the effects of a test substance on inflammasome activation. This protocol offers an effective approach conducive to screening for and examining modifications of microglia inflammasome activation due to exposure to chemicals or pharmacological agents. © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Production of retroviruses to express inflammasome indicator Basic Protocol 2: Generation of inflammasome indicator BV-2 cells Basic Protocol 3: Priming and activation of BV-2-ASC-Cerulean cells for inflammasome activation assay Basic Protocol 4: Examining modifications to inflammasome activation by test substances Basic Protocol 5: Imaging and analysis of ASC speck formation.
Collapse
Affiliation(s)
- Negin P. Martin
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - G. Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| |
Collapse
|
8
|
Hafiane A, Daskalopoulou SS. Targeting the Residual Cardiovascular Risk by Specific Anti-inflammatory Interventions as a Therapeutic Strategy in Atherosclerosis. Pharmacol Res 2022; 178:106157. [DOI: 10.1016/j.phrs.2022.106157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
|
9
|
Pascual F. Reframing the Question: Does Mitochondrial Damage Set the Stage for Future Inflammation? ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:64001. [PMID: 34143672 PMCID: PMC8212939 DOI: 10.1289/ehp9598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
|
10
|
Microglia in Neurodegenerative Events-An Initiator or a Significant Other? Int J Mol Sci 2021; 22:ijms22115818. [PMID: 34072307 PMCID: PMC8199265 DOI: 10.3390/ijms22115818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
A change in microglia structure, signaling, or function is commonly associated with neurodegeneration. This is evident in the patient population, animal models, and targeted in vitro assays. While there is a clear association, it is not evident that microglia serve as an initiator of neurodegeneration. Rather, the dynamics imply a close interaction between the various cell types and structures in the brain that orchestrate the injury and repair responses. Communication between microglia and neurons contributes to the physiological phenotype of microglia maintaining cells in a surveillance state and allows the cells to respond to events occurring in their environment. Interactions between microglia and astrocytes is not as well characterized, nor are interactions with other members of the neurovascular unit; however, given the influence of systemic factors on neuroinflammation and disease progression, such interactions likely represent significant contributes to any neurodegenerative process. In addition, they offer multiple target sites/processes by which environmental exposures could contribute to neurodegenerative disease. Thus, microglia at least play a role as a significant other with an equal partnership; however, claiming a role as an initiator of neurodegeneration remains somewhat controversial.
Collapse
|