1
|
Jia N, Li G, Wang X, Cao Q, Chen W, Wang C, Chen L, Ma X, Zhang X, Tao Y, Zang J, Mo X, Hu J. Staphylococcal superantigen-like protein 10 induces necroptosis through TNFR1 activation of RIPK3-dependent signal pathways. Commun Biol 2022; 5:813. [PMID: 35962126 PMCID: PMC9374677 DOI: 10.1038/s42003-022-03752-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2022] [Indexed: 11/11/2022] Open
Abstract
Staphylococcal aureus (S. aureus) infection can lead to a wide range of diseases such as sepsis and pneumonia. Staphylococcal superantigen-like (SSL) proteins, expressed by all known S. aureus strains, are shown to be involved in immune evasion during S. aureus infection. Here, we show that SSL10, an SSL family protein, exhibits potent cytotoxicity against human cells (HEK293T and HUVEC) by inducing necroptosis upon binding to its receptor TNFR1 on the cell membrane. After binding, two distinct signaling pathways are activated downstream of TNFR1 in a RIPK3-dependent manner, i.e., the RIPK1-RIPK3-MLKL and RIPK3-CaMKII-mitochondrial permeability transition pore (mPTP) pathways. Knockout of ssl10 in S. aureus significantly reduces cytotoxicity of the culture supernatants of S. aureus, indicating that SSL10 is involved in extracellular cytotoxicity during infection. We determined the crystal structure of SSL10 at 1.9 Å resolution and identified a positively charged surface of SSL10 responsible for TNFR1 binding and cytotoxic activity. This study thus provides the description of cytotoxicity through induction of necroptosis by the SSL10 protein, and a potential target for clinical treatment of S. aureus-associated diseases. The Staphylococcal superantigen like protein 10 induces necroptosis in human cells through binding to TNFR1 by both the N- and C-terminal domains and activating RIPK1-RIPK3-MLKL and RIPK3-CaMKII-mitochondrial permeability transition pore pathways.
Collapse
Affiliation(s)
- Nan Jia
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.,The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Xing Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wanbiao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Chengliang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ling Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoling Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yue Tao
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Jianye Zang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Xi Mo
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Jinfeng Hu
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China. .,Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|