1
|
Muller J, Mohammad I, Warner S, Paskin R, Constable F, Fegan M. Genetic Diversity of Australian Bacillus anthracis Isolates Revealed by Multiple-Locus Variable-Number Tandem Repeat Analysis. Microorganisms 2020; 8:microorganisms8060886. [PMID: 32545283 PMCID: PMC7355618 DOI: 10.3390/microorganisms8060886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
Outbreaks of anthrax occur sporadically in Australia and most commonly in the "anthrax belt", a region which extends from southern Queensland through the centre of New South Wales and into northern Victoria. Little is known about the epidemiological links between Bacillus anthracis isolates taken from different outbreaks and the diversity of strains within Australia. We used multiple-locus variable-number tandem repeat analysis employing 25 markers (MLVA25) to genotype 99 B. anthracis isolates from an archival collection of Australian isolates. MLVA25 genotyping revealed eight unique genotypes which clustered within the previously defined A3 genotype of B. anthracis. Genotyping of B. anthracis strains from outbreaks of disease in Victoria identified the presence of multiple genotypes associated with these outbreaks. The geographical distribution of genotypes within Australia suggests that a single genotype was introduced into the eastern states of Australia, followed by the spread and localised differentiation of the pathogen (MLVA25 genotypes MG1-MG6) throughout the anthrax belt. In contrast, unexplained occurrences of disease in areas outside of this anthrax belt which are associated with different genotypes, (MLVA25 genotypes MG7 and MG8) indicate separate introductions of B. anthracis into Australia.
Collapse
Affiliation(s)
- Janine Muller
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
- Correspondence:
| | - Ilhan Mohammad
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
| | - Simone Warner
- Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Victoria 3085, Australia;
| | - Roger Paskin
- OMNI Animal Health Consultancy, 6/35 McLaren Street, Mount Barker, South Australia 5251, Australia;
| | - Fiona Constable
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
| | - Mark Fegan
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
| |
Collapse
|
2
|
|
3
|
Okutani A, Inoue S, Morikawa S. Comparative genomics and phylogenetic analysis of Bacillus anthracis strains isolated from domestic animals in Japan. INFECTION GENETICS AND EVOLUTION 2019; 71:128-139. [PMID: 30928604 DOI: 10.1016/j.meegid.2019.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Abstract
Anthrax, caused by Bacillus anthracis, is a severe zoonosis with a great impact on both human and animal health. In the present study, we identified the phylogenetic relationships among 16 Japanese strains of B. anthracis, including eight bovine strains, two equine strains, five swine strains, and one former vaccine strain, using in silico canonical single nucleotide polymorphism (canSNP) and core genome SNP analyses. The results of our in silico canSNP analysis suggest that these 16 Japanese strains could be divided into four lineages: i) one equine strain in A.Br.Ames, ii) one equine and six bovine strains in A.Br.001/002, iii) five swine and one bovine strain in A.Br.Aust94, and iv) one bovine and one vaccine strain in A.Br.008/011. A comparison with non-Japanese B. anthracis strains revealed a total of 3787 SNPs identified from the whole genome sequences of the Japanese strains; these SNP data were subjected to a phylogenetic analysis using the maximum parsimony (MP) method. Our core genome SNP analysis was also able to detect differences of a few chromosomal SNPs across clonal strains from the same cases that had different storage and passage histories. Additionally, our whole genome SNP analysis clearly indicated that the Japanese swine anthrax cases of 1982 were caused by at least three independent strains; however, their phylogeny revealed no clear relationship with swine strains from other countries. The bovine strain belonging to the A.Br.008/011 lineage differed from a former Japanese vaccine strain by only 12 SNPs. Together with the phylogenic results and epidemiological circumstances, the diversity of strains reveals that the B. anthracis available in Japan probably resulted from multiple relatively recent import events, rather than reflecting the persistence of a more ancient ecologically established group.
Collapse
Affiliation(s)
- Akiko Okutani
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
4
|
Timofeev VS, Bakhteeva IV, Dyatlov IA. Genotyping of Bacillus anthracis and Closely Related Microorganisms. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418010118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Draft Genome Sequences of Bacillus anthracis Strains Stored for Several Decades in Japan. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00633-15. [PMID: 26089418 PMCID: PMC4472895 DOI: 10.1128/genomea.00633-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequences of Bacillus anthracis strains Shikan-NIID, 52-40-NIAH, and 44-NIAH stored in Japan and belonging to the A3 cluster.
Collapse
|
6
|
Source tracking of an anthrax outbreak in northeastern China using complete genome analysis and MLVA genotyping. Eur J Clin Microbiol Infect Dis 2014; 34:89-100. [DOI: 10.1007/s10096-014-2195-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/22/2014] [Indexed: 11/26/2022]
|
7
|
Derzelle S, Thierry S. Genetic diversity of Bacillus anthracis in Europe: genotyping methods in forensic and epidemiologic investigations. Biosecur Bioterror 2014; 11 Suppl 1:S166-76. [PMID: 23971802 DOI: 10.1089/bsp.2013.0003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus anthracis, the etiological agent of anthrax, a zoonosis relatively common throughout the world, can be used as an agent of bioterrorism. In naturally occurring outbreaks and in criminal release of this pathogen, a fast and accurate diagnosis is crucial to an effective response. Microbiological forensics and epidemiologic investigations increasingly rely on molecular markers, such as polymorphisms in DNA sequence, to obtain reliable information regarding the identification or source of a suspicious strain. Over the past decade, significant research efforts have been undertaken to develop genotyping methods with increased power to differentiate B. anthracis strains. A growing number of DNA signatures have been identified and used to survey B. anthracis diversity in nature, leading to rapid advances in our understanding of the global population of this pathogen. This article provides an overview of the different phylogenetic subgroups distributed across the world, with a particular focus on Europe. Updated information on the anthrax situation in Europe is reported. A brief description of some of the work in progress in the work package 5.1 of the AniBioThreat project is also presented, including (1) the development of a robust typing tool based on a suspension array technology and multiplexed single nucleotide polymorphisms scoring and (2) the typing of a collection of DNA from European isolates exchanged between the partners of the project. The know-how acquired will contribute to improving the EU's ability to react rapidly when the identity and real origin of a strain need to be established.
Collapse
|
8
|
Thierry S, Tourterel C, Le Flèche P, Derzelle S, Dekhil N, Mendy C, Colaneri C, Vergnaud G, Madani N. Genotyping of French Bacillus anthracis strains based on 31-loci multi locus VNTR analysis: epidemiology, marker evaluation, and update of the internet genotype database. PLoS One 2014; 9:e95131. [PMID: 24901417 PMCID: PMC4046976 DOI: 10.1371/journal.pone.0095131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 03/24/2014] [Indexed: 12/28/2022] Open
Abstract
Background Bacillus anthracis is known to have low genetic variability. In spite of this lack of diversity, multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) and single nucleotide polymorphisms (SNPs) including the canonical SNPs assay (canSNP) have proved to be highly effective to differentiate strains. Five different MLVA schemes based on a collection of 31 VNTR loci (MLVA8, MLVA15, MLVA20, MLVA25 and MLVA31) with increased resolving power have been described. Results MLVA31 was applied to characterize the French National Reference Laboratory collection. The total collection of 130 strains is resolved in 35 genotypes. The 119 veterinary and environmental strains collection in France were resolved into 26 genotypes belonging to three canSNP lineages and four MLVA clonal complexes (CCs) with particular geographical clustering. A subset of seven loci (MLVA7) is proposed to constitute a first line assay. The loci are compatible with moderate resolution equipment such as agarose gel electrophoresis and show a good congruence value with MLVA31. The associated MLVA and SNP data was imported together with published genotyping data by taking advantage of major enhancements to the MLVAbank software and web site. Conclusions The present report provides a wide coverage of the genetic diversity of naturally occurring B. anthracis strains in France as can be revealed by MLVA. The data obtained suggests that once such coverage is achieved, it becomes possible to devise optimized first-line MLVA assays comprising a sufficiently low number of loci to be typed either in one multiplex PCR or on agarose gels. Such a selection of seven loci is proposed here, and future similar investigations in additional countries will indicate to which extend the same selection can be used worldwide as a common minimum set. It is hoped that this approach will contribute to an efficient and low-cost routine surveillance of important pathogens for biosecurity such as B. anthracis.
Collapse
Affiliation(s)
- Simon Thierry
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Christophe Tourterel
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Philippe Le Flèche
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Division of Analytical Microbiology, DGA CBRN Defence, Vert le Petit, France
| | - Sylviane Derzelle
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Neira Dekhil
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Christiane Mendy
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Cécile Colaneri
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Gilles Vergnaud
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
- DGA/MRIS- Mission pour la Recherche et l'Innovation Scientifique, Bagneux, France
| | - Nora Madani
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
- * E-mail:
| |
Collapse
|
9
|
Eremenko EI, Ryazanova AG, Tsygankova OI, Tsygankova EA, Buravtseva NP, Kulitchenko AN. Genotype diversity of Bacillus anthracis strains isolated from the Caucasus region. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2012. [DOI: 10.3103/s0891416812020024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Derzelle S, Laroche S, Le Flèche P, Hauck Y, Thierry S, Vergnaud G, Madani N. Characterization of genetic diversity of Bacillus anthracis in France by using high-resolution melting assays and multilocus variable-number tandem-repeat analysis. J Clin Microbiol 2011; 49:4286-92. [PMID: 21998431 PMCID: PMC3232934 DOI: 10.1128/jcm.05439-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/04/2011] [Indexed: 11/20/2022] Open
Abstract
Using high-resolution melting (HRM) analysis, we developed a cost-effective method to genotype a set of 13 phylogenetically informative single-nucleotide polymorphisms (SNPs) within the genome of Bacillus anthracis. SNP discrimination assays were performed in monoplex or duplex and applied to 100 B. anthracis isolates collected in France from 1953 to 2009 and a few reference strains. HRM provided a reliable and cheap alternative to subtype B. anthracis into one of the 12 major sublineages or subgroups. All strains could be correctly positioned on the canonical SNP (canSNP) phylogenetic tree, except the divergent Pasteur vaccine strain ATCC 4229. We detected the cooccurrence of three canSNP subgroups in France. The dominant B.Br.CNEVA sublineage was found to be prevalent in the Alps, the Pyrenees, the Auvergne region, and the Saône-et-Loire department. Strains affiliated with the A.Br.008/009 subgroup were observed throughout most of the country. The minor A.Br.001/002 subgroup was restricted to northeastern France. Multiple-locus variable-number tandem-repeat analysis using 24 markers further resolved French strains into 60 unique profiles and identified some regional patterns. Diversity found within the A.Br.008/009 and B.Br.CNEVA subgroups suggests that these represent old, ecologically established clades in France. Phylogenetic relationships with strains from other parts of the world are discussed.
Collapse
Affiliation(s)
- S Derzelle
- Bacterial Zoonosis Unit, Maisons-Alfort Laboratory for Animal Health, ANSES, 23 Avenue du Général de Gaulle, 94706 Maisons Alfort cedex, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Genome-wide single nucleotide polymorphism typing method for identification of Bacillus anthracis species and strains among B. cereus group species. J Clin Microbiol 2010; 48:2821-9. [PMID: 20554827 DOI: 10.1128/jcm.00137-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an issue of biosecurity, species-specific genetic markers have been well characterized. However, Bacillus anthracis strain-specific information is currently not sufficient for traceability to identify the origin of the strain. By using genome-wide screening using short read mapping, we identified strain-specific single nucleotide polymorphisms (SNPs) among B. anthracis strains including Japanese isolates, and we further developed a simplified 80-tag SNP typing method for the primary investigation of traceability. These 80-tag SNPs were selected from 2,965 SNPs on the chromosome and the pXO1 and pXO2 plasmids from a total of 19 B. anthracis strains, including the available genome sequences of 17 strains in the GenBank database and 2 Japanese isolates that were sequenced in this study. Phylogenetic analysis based on 80-tag SNP typing showed a higher resolution power to discriminate 12 Japanese isolates rather than the 25 loci identified by multiple-locus variable-number tandem-repeat analysis (MLVA). In addition, the 80-tag PCR testing enabled the discrimination of B. anthracis from other B. cereus group species, helping to identify whether a suspected sample originates from the intentional release of a bioterrorism agent or environmental contamination with a virulent agent. In conclusion, 80-tag SNP typing can be a rapid and sufficient test for the primary investigation of strain origin. Subsequent whole-genome sequencing will reveal apparent strain-specific genetic markers for traceability of strains following an anthrax outbreak.
Collapse
|