1
|
Mokhtari S, Zarrin M, Samadian F, Ahmadpour A. Both Feed Restriction and Transition Period Suppressed Adipose Tissue MRNA Abundance of Genes Involved in Lipogenesis and Lipolysis in Fat-Tailed Ewes. J Anim Physiol Anim Nutr (Berl) 2025; 109:646-654. [PMID: 39696981 DOI: 10.1111/jpn.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
This study sought to investigate the consequences of the induced feed restriction during the transition period on the mRNA abundance of genes entangled in lipogenesis and lipolysis in the tail adipose of fat-tailed sheep. Twenty fat-tailed ewes were randomised into the control (Control; n = 10) and restriction (Restriction; n = 10) groups. Control animals were fed 100% of the balanced diet pre-(Week -5 to parturition) and post-partum (parturition to Week 5). Restriction ewes received equivalent 100%, 50%, 65%, 80%, and 100% of the balanced ration at Weeks -5, -4, -3, -2, and -1 relative to parturition, respectively. After parturition, the latter group received the equivalent of 100%, 50%, 65%, 80%, and 100% of the diet recommendation at weeks 1, 2, 3, 4, and 5, respectively. At the end of weeks -3 and 3, tail adipose were sampled under local anesthesia. Fatty acid synthase, acetyl-CoA carboxylase, carnitine palmitoyltransferase I and II, and acyl-CoA synthase long-chain family member-1 mRNA abundances were measured using the TaqMan quantity real-time PCR. A mixed model procedure of SAS software was used to evaluate the results. Feed restriction downregulated target genes' mRNA abundance during both pre- and post-partum. Parturition suppressed the mRNA abundance of measured genes in both groups. Established on the outcomes, lipogenesis, and lipolysis of the adipose tissue would be influenced by metabolite and hormone instability during the transition period and feed restriction. The lessening of adipose tissue lipogenesis and lipolysis might be a hemostatic response to cope with the energy insufficiency for fetal growth and the onset of lactation and also prevent the induction of inflammation, metabolic disorders, and infectious diseases during feed restriction or transition period.
Collapse
Affiliation(s)
- Sara Mokhtari
- Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Mousa Zarrin
- Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Farhad Samadian
- Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Amir Ahmadpour
- Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| |
Collapse
|
2
|
Zhao HY, Tan J, Li LX, Wang Y, Liu M, Jiang LS, Zhao YC. Longitudinal characterization of serum metabolome and lipidome reveals that the ceramide profile is associated with metabolic health in early postpartum cows experiencing different lipolysis. J Dairy Sci 2024; 107:7446-7468. [PMID: 38788838 DOI: 10.3168/jds.2023-24510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
Reduced feed intake in early lactation prompts increased fat mobilization to meet dairy cow energy needs for milk production. The increased lipolysis in cows presents significant health risks with unclear mechanisms. The objectives of our study were to compare the longitudinal profiles of metabolites and lipids of serum from high- and low-lipolysis cows. Forty multiparous Holstein dairy cows were enrolled in the retrospective study. Serum samples were collected on d 7 before expected calving, as well as on d 5, 7, 14, and 21 postpartum. Dairy cows were grouped according to mean serum nonesterified fatty acids on d 5 and 7 after parturition as low (<0.600 mmol/L; n = 8; LFM) and high (>0.750 mmol/L; n = 8; HFM), indicating fat mobilization during early lactation. Lactational performance and serum metabolic parameters related to glucose and lipid metabolism, liver functions, oxidative status, and inflammatory responses were determined. Serum samples were subjected to liquid chromatography-MS-based metabolomics and lipidomics. Despite differences in postpartum BW change, there were no observed variations in milk yield and composition between the 2 groups. Serum β-hydroxybutyric acid, glucose, leptin, aspartate aminotransferase, IL-6, and tumor necrosis factor alpha were greater in cows with HFM than in cows with LFM. Serum adiponectin, revised quantitative insulin sensitivity check index, and albumin were lower in cows with HFM than in cows with LFM. Intensified fat mobilization in the HFM cows came along with reduced estimated insulin sensitivity, impaired liver functions, and increased oxidative stress and inflammatory responses. Differences in metabolic patterns were observed across the transition period when comparing serum blood matrixes (e.g., in different amino acids, acylcarnitines, and sphingolipids). The serum metabolome of the HFM cows was characterized by higher concentrations of glycine, acylcarnitines, carnosine, Cer(d20:0/18:0), Cer(d18:1/16:0), and Cer(t18:0/24:0) compared with LFM cows. The differential serum metabolites and lipids at different sampling times during the peripartum period were enriched in the sphingolipid metabolism. Differences in serum metabolic status parameters suggest that cows adopt varied metabolic adaptation strategies to cope with energy deficits postpartum. Our investigation found a comprehensive remodeling of the serum metabolic profiles in transition dairy cattle, highlighting the significance of alterations in sphingolipid species, as they play a crucial role in insulin resistance and metabolic disorders.
Collapse
Affiliation(s)
- H Y Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - J Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - L X Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Y Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - M Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - L S Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China.
| | - Y C Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China.
| |
Collapse
|
3
|
Barcarolo D, Angeli E, Etchevers L, Ribas LE, Matiller V, Rey F, Ortega HH, Hein GJ. Effect of Parenteral Supplementation of Minerals and Vitamins on Oxidative Stress Biomarkers and Hepatic Fatty Acid Metabolism in Dairy Cows During the Transition Period. Biol Trace Elem Res 2024; 202:1582-1593. [PMID: 37466757 DOI: 10.1007/s12011-023-03776-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
In the present work we aimed to study the effects of parenteral vitamin and mineral supplementation on hepatic fatty acid metabolism as well as on the oxidative stress biomarkers in biological samples of transition cows. The supplemented group (SG, n = 11) received a subcutaneous injection of 5 mL of vitamin A palmitate 35 mg/mL, vitamin E acetate 50 mg/mL plus other injection of 5 mL of copper edetate 10 mg/mL, zinc edetate 40 mg/mL, manganese edetate 10 mg/mL, and sodium selenite 5 mg/mL on days - 60, - 30, and 7 (± 3) relative to calving. The control group (CG, n = 11) received two subcutaneous injections of 5 mL of 9 mg/mL sodium chloride at the same times of the SG. Blood, urine, and liver biopsies were sampled 21 (± 3) days before the expected calving date and 7 and 21 (± 3) days after calving. Results revealed that supplemented animals had higher glutation peroxidase (GSH-Px) activity, lower and higher concentration of 3-nitrotyrosine (3-NT) in the liver and plasma, respectively, higher expression of the mitochondrial beta-oxidation enzyme carnitine palmitoyltransferase 1 in the liver, and lower content of hepatic triacylglycerol, mirroring plasma liver function parameters. No differences between groups were found in the superoxide dismutase activity, MDA concentrations, the protein abundance of peroxisomal acyl-CoA oxidase 1, diacylglycerol O-acyltransferase 1, and peroxisome proliferator-activated receptor alpha. These results suggest that the vitamin and mineral supplementation provided to dairy cows had a beneficial effect on GSH-Px activity, hepatic 3-NT concentration, and on the metabolic adaptation during the peripartum period.
Collapse
Affiliation(s)
- Daiana Barcarolo
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - Emmanuel Angeli
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Lucas Etchevers
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Lucas E Ribas
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Gálvez, Santa Fe, Argentina
| | - Valentina Matiller
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Florencia Rey
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Hugo H Ortega
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Gustavo J Hein
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Gálvez, Santa Fe, Argentina
| |
Collapse
|
4
|
Ghaffari MH, Sadri H, Sauerwein H. Invited review: Assessment of body condition score and body fat reserves in relation to insulin sensitivity and metabolic phenotyping in dairy cows. J Dairy Sci 2023; 106:807-821. [PMID: 36460514 DOI: 10.3168/jds.2022-22549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this article is to review body condition scoring and the role of body fat reserves in relation to insulin sensitivity and metabolic phenotyping. This article summarizes body condition scoring assessment methods and the differences between subcutaneous and visceral fat depots in dairy cows. The mass of subcutaneous and visceral adipose tissue (AT) changes significantly during the transition period; however, metabolism and intensity of lipolysis differ between subcutaneous and visceral AT depots of dairy cows. The majority of studies on AT have focused on subcutaneous AT, and few have explored visceral AT using noninvasive methods. In this systematic review, we summarize the relationship between body fat reserves and insulin sensitivity and integrate omics research (e.g., metabolomics, proteomics, lipidomics) for metabolic phenotyping of cows, particularly overconditioned cows. Several studies have shown that AT insulin resistance develops during the prepartum period, especially in overconditioned cows. We discuss the role of AT lipolysis, fatty acid oxidation, mitochondrial function, acylcarnitines, and lipid insulin antagonists, including ceramide and glycerophospholipids, in cows with different body condition scoring. Nonoptimal body conditions (under- or overconditioned cows) exhibit marked abnormalities in metabolic and endocrine function. Overall, reducing the number of cows with nonoptimal body conditions in herds seems to be the most practical solution to improve profitability, and dairy farmers should adjust their management practices accordingly.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany.
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany
| |
Collapse
|
5
|
Batchu P, Naldurtiker A, Kouakou B, Terrill TH, McCommon GW, Kannan G. Metabolomic exploration of the effects of habituation to livestock trailer and extended transportation in goats. Front Mol Biosci 2022; 9:1027069. [PMID: 36465562 PMCID: PMC9714579 DOI: 10.3389/fmolb.2022.1027069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/01/2022] [Indexed: 03/26/2024] Open
Abstract
Goats raised for meat production are often transported long distances. Twelve-month-old male Spanish goats were used to determine the effects of habituation to trailers on plasma metabolomic profiles when transported for extended periods. In a split-plot design, 168 goats were separated into two treatment (TRT; whole plot) groups and maintained on two different paddocks. Concentrate supplement was fed to one group inside two livestock trailers (habituated group, H), while the other group received the same quantity of concentrate, but not inside the trailers (non-habituated, NH). Goats were subjected to a 10-h transportation stress in 4 replicates (n = 21 goats/replicate/TRT) after 4 weeks of habituation period. Blood samples were collected prior to loading, 20 min after loading (0 h), and at 2, 4, 6, 8, and 10 h of transportation (Time; subplot). A targeted quantitative metabolomics approach was employed to analyze the samples. The data were analyzed using R software and MIXED procedures in SAS. Several amino acids (alanine, serine, glycine, histidine, glutamate, trans-hydroxyproline, asparagine, threonine, methylhistidine, ornithine, proline, leucine, tryptophan) were higher (p < 0.05) in the H group compared to the NH group. Six long-chain acylcarnitines were higher (p < 0.05), while free (C0) and short-chain (C3, C5) carnitines were lower (p < 0.05) in the NH goats compared to the H goats. In general, amino acid concentrations decreased and long-chain acylcarnitine (>C10) levels increased with transportation time (p < 0.05). Butyric acid, α-ketoglutaric acid, and α-aminoadipic acid concentrations were lower (p < 0.05) and β-hydroxybutyric acid concentrations were higher in the NH goats compared to the H goats. Plasma glucose, non-esterified fatty acid (NEFA) and urea nitrogen concentrations were significantly influenced by Time (p < 0.01). Plasma NEFA concentrations were significantly lower (p < 0.01) in the H group than the NH group. Habituation to trailers can be beneficial in enhancing stress coping abilities in goats due to higher concentrations of metabolites such as butyrate and certain amino acids that support antioxidant activities and immune function. Plasma long-chain acylcarnitines may be good indicators of stress during long-distance transportation in goats.
Collapse
Affiliation(s)
| | | | | | | | | | - Govind Kannan
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA, United States
| |
Collapse
|
6
|
Wu X, Huang S, Huang J, Peng P, Liu Y, Han B, Sun D. Identification of the Potential Role of the Rumen Microbiome in Milk Protein and Fat Synthesis in Dairy Cows Using Metagenomic Sequencing. Animals (Basel) 2021; 11:ani11051247. [PMID: 33926012 PMCID: PMC8146572 DOI: 10.3390/ani11051247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The rumen is the main digestive and absorption organ of dairy cows. It contains abundant microorganisms and can effectively use human-indigestible plant mass. Therefore, we used metagenomics to explore the role of rumen microbes in the regulation of milk protein and fat in dairy cows. This study showed that Prevotella species and Neocallimastix californiae in the rumen of cows are related to the synthesis of milk components due to their important functions in carbohydrate, amino acid, pyruvate, insulin, and lipid metabolism and transportation metabolic pathways. Abstract The rumen contains abundant microorganisms that aid in the digestion of lignocellulosic feed and are associated with host phenotype traits. Cows with extremely high milk protein and fat percentages (HPF; n = 3) and low milk protein and fat percentages (LPF; n = 3) were selected from 4000 lactating Holstein cows under the same nutritional and management conditions. We found that the total concentration of volatile fatty acids, acetate, butyrate, and propionate in the rumen fluid was significantly higher in the HPF group than in the LPF group. Moreover, we identified 38 most abundant species displaying differential richness between the two groups, in which Prevotella accounted for 68.8% of the species, with the highest abundance in the HPF group. Functional annotation based on the Kyoto Encyclopedia of Gene and Genome (KEGG), evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG), and Carbohydrate-Active enzymes (CAZy) databases showed that the significantly more abundant species in the HPF group are enriched in carbohydrate, amino acid, pyruvate, insulin, and lipid metabolism and transportation. Furthermore, Spearman’s rank correlation analysis revealed that specific microbial taxa (mainly the Prevotella species and Neocallimastix californiae) are positively correlated with total volatile fatty acids (VFA). Collectively, we found that the HPF group was enriched with several Prevotella species related to the total VFA, acetate, and amino acid synthesis. Thereby, these fulfilled the host’s needs for energy, fat, and rumen microbial protein, which can be used for increased biosynthesis of milk fat and milk protein. Our findings provide novel information for elucidation of the regulatory mechanism of the rumen in the formation of milk composition.
Collapse
Affiliation(s)
- Xin Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.W.); (J.H.); (P.P.); (Y.L.); (B.H.)
| | - Shuai Huang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jinfeng Huang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.W.); (J.H.); (P.P.); (Y.L.); (B.H.)
| | - Peng Peng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.W.); (J.H.); (P.P.); (Y.L.); (B.H.)
| | - Yanan Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.W.); (J.H.); (P.P.); (Y.L.); (B.H.)
| | - Bo Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.W.); (J.H.); (P.P.); (Y.L.); (B.H.)
| | - Dongxiao Sun
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.W.); (J.H.); (P.P.); (Y.L.); (B.H.)
- Correspondence:
| |
Collapse
|
7
|
Caprarulo V, Erb SJ, Chandler TL, Zenobi MG, Barton BA, Staples CR, White HM. The effects of prepartum energy intake and peripartum rumen-protected choline supplementation on hepatic genes involved in glucose and lipid metabolism. J Dairy Sci 2020; 103:11439-11448. [PMID: 33222856 DOI: 10.3168/jds.2020-18840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Nutritional interventions, either by controlling dietary energy (DE) or supplementing rumen-protected choline (RPC) or both, may mitigate negative postpartum metabolic health outcomes. A companion paper previously reported the effects of DE density and RPC supplementation on production and health outcomes. The objective of this study was to examine the effects of DE and RPC supplementation on the expression of hepatic oxidative, gluconeogenic, and lipid transport genes during the periparturient period. At 47 ± 6 d relative to calving (DRTC), 93 multiparous Holstein cows were randomly assigned in groups to dietary treatments in a 2 × 2 factorial of (1) excess energy (EXE) without RPC supplementation (1.63 Mcal of NEL/kg of dry matter; EXE-RPC); (2) maintenance energy (MNE) without RPC supplementation (1.40 Mcal of NEL/kg dry matter; MNE-RPC); (3) EXE with RPC supplementation (EXE+RPC); and (4) MNE with RPC supplementation (MNE+RPC). To achieve the objective of this research, liver biopsy samples were collected at -14, +7, +14, and +21 DRTC and analyzed for mRNA expression (n = 16/treatment). The interaction of DE × RPC decreased glucose-6-phosphatase and increased peroxisome proliferator-activated receptor α in MNE+RPC cows. Expression of cytosolic phosphoenolpyruvate carboxykinase was altered by the interaction of dietary treatments with reduced expression in EXE+RPC cows. A dietary treatment interaction was detected for expression of pyruvate carboxylase although means were not separated. Dietary treatment interactions did not alter expression of carnitine palmitoyltransferase 1A or microsomal triglyceride transfer protein. The 3-way interaction of DE × RPC × DRTC affected expression of carnitine palmitoyltransferase 1A, glucose-6-phosphatase, and peroxisome proliferator-activated receptor α and tended to affect cytosolic phosphoenolpyruvate carboxykinase. Despite previously reported independent effects of DE and RPC on production variables, treatments interacted to influence hepatic metabolism through altered gene expression.
Collapse
Affiliation(s)
- V Caprarulo
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706; Department of Health, Animal Science and Food Safety, University of Milan, Milan 20134, Italy
| | - S J Erb
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706
| | - T L Chandler
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706
| | - M G Zenobi
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | | | - C R Staples
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - H M White
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706.
| |
Collapse
|
8
|
Ghaffari MH, Sadri H, Schuh K, Dusel G, Prehn C, Adamski J, Koch C, Sauerwein H. Alterations of the acylcarnitine profiles in blood serum and in muscle from periparturient cows with normal or elevated body condition. J Dairy Sci 2020; 103:4777-4794. [PMID: 32113781 DOI: 10.3168/jds.2019-17713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
The objective of the current study was to characterize muscle and blood serum acylcarnitine (AcylCN) profiles and to determine the mRNA abundance of muscle carnitine acyltransferases in periparturient dairy cows with high (HBCS) and normal body condition (NBCS). Fifteen weeks antepartum, 38 pregnant multiparous Holstein cows were assigned to 2 groups that were fed differently to reach the targeted BCS and backfat thickness (BFT) until dry-off at -49 d before calving (HBCS: BCS >3.75 and BFT >1.4 cm; NBCS: <3.5 and <1.2 cm). Thereafter, both groups were fed identical diets. Blood samples and biopsies from the semitendinosus muscle were collected on d -49, 3, 21, and 84 relative to calving. Actual BCS at d -49 were 3.02 ± 0.24 and 3.82 ± 0.33 (mean ± SD) for NBCS and HBCS, respectively. In both groups, serum profiles showed marked changes during the periparturient period, with decreasing concentrations of free carnitine and increasing concentrations of long-chain AcylCN. Compared with NBCS, HBCS had greater serum long-chain AcylCN in early lactation, which may point to an insufficient adaptation of their metabolism in response to the metabolic load of fatty acids around parturition. The muscle concentrations of C5-, C9-, C18:1-, and C18:2-AcylCN were lower and those of C14:2-AcylCN were greater in HBCS than in NBCS cows. The mRNA abundance of carnitine palmitoyltransferase (CPT)1, muscle isoform (CPT1b) and CPT2 increased from d -49 to early lactation (d 3, d 21), followed by a decline to nearly antepartum values by d 84; this change was not affected by group. In conclusion, over-conditioning around calving seems to be associated with mitochondrial overload, which can result in incomplete fatty acid oxidation in dairy cows.
Collapse
Affiliation(s)
- Morteza H Ghaffari
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Katharina Schuh
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany; Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Georg Dusel
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan 85350, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweileran der Alsenz, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
9
|
Novak TE, Rodriguez-Zas SL, Southey BR, Starkey JD, Stockler RM, Alfaro GF, Moisá SJ. Jersey steer ruminal papillae histology and nutrigenomics with diet changes. J Anim Physiol Anim Nutr (Berl) 2019; 103:1694-1707. [PMID: 31483547 PMCID: PMC6899929 DOI: 10.1111/jpn.13189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
The transition from a high forage to a high concentrate diet is an important milestone for beef cattle moving from a stocker system to the feedlot. However, little is known about how this transition affects the rumen epithelial gene expression. This study assessed the effects of the transition from a high forage to a high concentrate diet as well as the transition from a high concentrate to a high forage diet on a variety of genes as well as ruminal papillae morphology in rumen fistulated Jersey steers. Jersey steers (n = 5) were fed either a high forage diet (80% forage and 20% grain) and transitioned to a high concentrate diet (20% forage and 80% grain) or a high concentrate diet (40% forage and 60% grain) and transitioned to a high forage diet (100% forage). Papillae from the rumen were collected for histology and RT‐qPCR analysis. Body weight had a tendency for significant difference (p = .08). Histological analysis did not show changes in papillae length or width in steers transitioning from a high forage to a high concentrate diet or vice versa (p > .05). Genes related to cell membrane structure (CLDN1, CLDN4, DSG1), fatty acid metabolism (CPT1A, ACADSB), glycolysis (PFKL), ketogenesis (HMGCL, HMGCS2, ACAT1), lactate/pyruvate (LDHA), oxidative stress (NQO1), tissue growth (AKT3, EGFR, EREG, IGFBP5, IRS1) and the urea cycle (SLC14A1) were considered in this study. Overall, genes related to fatty acid metabolism (ACADSB) and growth and development (AKT3 and IGFBP5) had a tendency for a treatment × day on trial interaction effect. These profiles may be indicators of rumen epithelial adaptations in response to changes in diet. In conclusion, these results indicate that changes in the composition of the diet can alter the expression of genes with specific functions in rumen epithelial metabolism.
Collapse
Affiliation(s)
- Taylor E Novak
- Department of Animal Sciences, Auburn University, Auburn, AL, USA
| | | | - Bruce R Southey
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | | | - Gastón F Alfaro
- Department of Animal Sciences, Auburn University, Auburn, AL, USA
| | - Sonia J Moisá
- Department of Animal Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
10
|
Rico J, Zang Y, Haughey N, Rius A, McFadden J. Short communication: Circulating fatty acylcarnitines are elevated in overweight periparturient dairy cows in association with sphingolipid biomarkers of insulin resistance. J Dairy Sci 2018; 101:812-819. [DOI: 10.3168/jds.2017-13171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/16/2017] [Indexed: 12/19/2022]
|
11
|
Li X, Li X, Chen H, Lei L, Liu J, Guan Y, Liu Z, Zhang L, Yang W, Zhao C, Fu S, Li P, Liu G, Wang Z. Non-esterified fatty acids activate the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes. Cell Biochem Biophys 2014; 67:1157-69. [PMID: 23690240 DOI: 10.1007/s12013-013-9629-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Non-esterified fatty acids (NEFAs) act as signaling molecules involved in regulating genes expression to modulate lipid metabolism. However, the regulation mechanism of NEFAs on lipid metabolism in dairy cows is unclear. The AMP-activated protein kinase (AMPK) signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of NEFAs and AMPKα inhibitors (BML-275). NEFAs increased AMPKα phosphorylation through up-regulating the protein levels of liver kinase B1. Activated AMPKα increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α (PPARα). NEFAs also directly activate the PPARα independent of AMPKα. Activated PPARα increased the lipolytic genes expression to increase lipid oxidation. Furthermore, activated AMPKα inhibited the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid synthesis. Activated AMPKα phosphorylated and inhibited acetyl-CoA carboxylase and increased carnitine palmitoyltransferase-1 activity, which increased lipid oxidation. Consequently, the triglyceride content in the NEFAs-treated hepatocytes was significantly decreased. These results indicate that NEFAs activate the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in hepatocytes, which in turn, generates more ATP to relieve the negative energy balance in transition dairy cows.
Collapse
Affiliation(s)
- Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Paczkowski M, Silva E, Schoolcraft WB, Krisher RL. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol Reprod 2013; 88:111. [PMID: 23536372 DOI: 10.1095/biolreprod.113.108548] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The objective of these experiments was to evaluate the importance of fatty acid beta-oxidation (FAO) in the cumulus oocyte complex (COC) during in vitro maturation (IVM) to oocyte nuclear maturation and gene expression in both the oocyte and cumulus cells in three species with differing amounts of oocyte intracellular lipids (mouse, low; bovine, moderate; porcine, high). We inhibited FAO using etomoxir at 0, 10, 25, 100, or 250 μM. Completion of oocyte nuclear maturation was inhibited after COC exposure to 250 μM etomoxir in mouse oocytes, 100 μM etomoxir in bovine oocytes, and as little as 10 μM etomoxir in porcine oocytes (P < 0.05). When FAO was inhibited in mouse and porcine COCs resulting in inhibition of meiosis, the abundance of FAO, glycolytic, and oxidative stress gene transcripts were decreased in oocytes and cumulus cells (P < 0.05), although to a much greater extent in the pig. In bovine oocytes and cumulus cells, FAO gene transcripts were increased and glycolytic gene expression altered following meiotic inhibition due to etomoxir. Etomoxir, at doses that did not inhibit nuclear maturation in bovine and murine COCs, increased glucose consumption (P < 0.05), suggesting glucose metabolism is increased to meet the metabolic demands of the COCs when fatty acid metabolism is compromised. Our data demonstrates that FAO is essential to oocyte nuclear maturation in all three species. Sensitivity of nuclear maturation to FAO inhibition reflects the amount of lipid present in the ooplasm and may suggest a relative reliance on this metabolic pathway.
Collapse
|
13
|
Li P, Li XB, Fu SX, Wu CC, Wang XX, Yu GJ, Long M, Wang Z, Liu GW. Alterations of fatty acid β-oxidation capability in the liver of ketotic cows. J Dairy Sci 2012; 95:1759-66. [PMID: 22459824 DOI: 10.3168/jds.2011-4580] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 12/14/2011] [Indexed: 11/19/2022]
Abstract
Dairy cows are highly susceptible to ketosis after parturition. In the present study, we evaluated the expression of fatty acid β-oxidation-related enzymes in the liver of ketotic (n=6) and nonketotic (n=6) cows. Serum levels of nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), and glucose were determined by using standard biochemical techniques. The mRNA abundance and protein content of acyl-CoA synthetase long-chain (ACSL), carnitine palmitoyltransferase I (CPT I), carnitine palmitoyltransferase II (CPT II), acyl-CoA dehydrogenase long chain (ACADL), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS), and acetyl-CoA carboxylase (ACC) were evaluated by real-time PCR and ELISA. We found that serum glucose levels were lower in ketotic cows than in nonketotic cows, but serum BHBA and NEFA concentrations were higher. Messenger RNA and protein levels of ACSL were significantly higher in livers of ketotic cows than those in nonketotic cows. In contrast, mRNA levels of CPT I and mRNA and protein levels of CPT II, ACADL, HMGCS, and ACC were decreased in the liver of ketotic cows. Serum NEFA concentration positively correlated with ACSL protein levels and negatively correlated with protein levels of CPT II, HMGCS, ACADL, and ACC. In addition, serum BHBA concentration negatively correlated with protein levels of CPT II, HMGCS, and ACADL. Overall, fatty acid β-oxidation capability was altered in the liver of ketotic compared with nonketotic cows. Furthermore, high serum NEFA and BHBA concentrations play key roles in affecting pathways of fatty acid metabolism in the liver.
Collapse
Affiliation(s)
- P Li
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | | | | | | | | | | | | | | | | |
Collapse
|