1
|
van den Hurk S, Regmi G, Naikare HK, Velayudhan BT. Advances in Laboratory Diagnosis of Coronavirus Infections in Cattle. Pathogens 2024; 13:524. [PMID: 39057751 PMCID: PMC11279749 DOI: 10.3390/pathogens13070524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the respiratory form of coronavirus, whereas the gastroenteric form causes neonatal diarrhea or calf scours in young cattle and winter dysentery in adult cattle. The tremendous impacts of bovine respiratory disease and the associated losses are well-documented and underscore the importance of this pathogen. Beyond this, studies have demonstrated significant impacts on milk production associated with outbreaks of winter dysentery, with up to a 30% decrease in milk yield. In North America, BCoV was identified for the first time in 1972, and it continues to be a significant economic concern for the cattle industry. A number of conventional and molecular diagnostic assays are available for the detection of BCoV from clinical samples. Conventional assays for BCoV detection include virus isolation, which is challenging from clinical samples, electron microscopy, fluorescent antibody assays, and various immunoassays. Molecular tests are mainly based on nucleic acid detection and predominantly include conventional and real-time polymerase chain reaction (PCR) assays. Isothermal amplification assays and genome sequencing have gained increased interest in recent years for the detection, characterization, and identification of BCoV. It is believed that isothermal amplification assays, such as loop-mediated isothermal amplification and recombinase polymerase amplification, among others, could aid the development of barn-side point-of-care tests for BCoV. The present study reviewed the literature on coronavirus infections in cattle from the last three and a half decades and presents information mainly on the current and advancing diagnostics in addition to epidemiology, clinical presentations, and the impact of the disease on the cattle industry.
Collapse
Affiliation(s)
- Shaun van den Hurk
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Girija Regmi
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA 30602, USA;
| | - Hemant K. Naikare
- University of Minnesota Veterinary Diagnostic Laboratory, Saint Paul, MN 55108, USA;
| | - Binu T. Velayudhan
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
2
|
Aksoy E, Azkur AK. Genome characterization of a Turkish bovine rotavirus field isolate by shotgun metagenomics. Arch Virol 2023; 168:159. [PMID: 37170023 DOI: 10.1007/s00705-023-05778-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
A bovine rotavirus (BRV) isolate from Kirsehir was isolated from feces of a neonatal calf with diarrhea, identified, and sequenced by shotgun sequencing. Its genotype constellation is G10-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The structural genes and the non-structural genes NSP1, NSP3, and NSP4 of the Kirsehir isolate were similar in sequence to those of BRVs identified in Turkey. However, VP2, NSP2, NSP4, and NSP5/6 showed similarity to those of rotaviruses from different animal hosts. These findings not only expand our current understanding of the diversity of rotaviruses but also contribute to our understanding of the evolution of rotaviruses at both the national and global levels and reinforce the significance of conducting further research on rotaviruses in Turkey.
Collapse
Affiliation(s)
- Emel Aksoy
- Department of Virology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Türkiye
| | - Ahmet Kürşat Azkur
- Department of Virology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Türkiye.
| |
Collapse
|
3
|
Atasoy MO, Isidan H, Turan T. Genetic diversity, frequency and concurrent infections of picobirnaviruses in diarrhoeic calves in Turkey. Trop Anim Health Prod 2022; 54:127. [PMID: 35247085 PMCID: PMC8897729 DOI: 10.1007/s11250-022-03128-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022]
Abstract
Calf diarrhoea is one of the major problems in cattle farming with high morbidity and mortality in herds. Two enteric viruses, bovine rotavirus (BRV) and bovine coronavirus (BCoV), are the leading cause of gastroenteritis in young calves, whereas picobirnaviruses (PBVs) are often associated with diarrhoea. In the present study, the faecal specimens of 127 diarrhoeic bovines (less than 1-month-old) were employed to investigate the infection frequencies of these three pathogens. Results indicated that frequencies of BRV and BCoV in diarrhoeic calves were 38.58% and 29.92%, respectively. The 7.08% of bovine calf samples (9 out of 127) were found to be positive for PBV genogroup I. Sequence analysis further revealed the high genetic heterogeneity within representative PBV sequences. Additionally, both PBV-BCoV (n = 2) and BCoV-BRV-PBV (n = 1) co-infections were detected in bovine calves for the first time. Consequently, our findings pointed out the highly divergent nature of PBVs without regard to exact host or territory and the occasional co-existence with other enteric agents.
Collapse
Affiliation(s)
- Mustafa Ozan Atasoy
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Hakan Isidan
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Turhan Turan
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| |
Collapse
|
4
|
Dong J, Liu G, Gao N, Suo J, Matthijnssens J, Li S, Yuan D, Du Y, Zhang J, Yamashita N, Haga T, Cook FR, Zhu W. A reassortant G3P[12] rotavirus A strain associated with severe enteritis in donkeys (Equus asinus). Equine Vet J 2021; 54:114-120. [PMID: 33455000 DOI: 10.1111/evj.13425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 12/27/2020] [Accepted: 01/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND In contrast to horses, the only evidence suggesting gastrointestinal disease in neonatal donkeys is associated with Group A rotaviruses (RVAs) is the detection of viral antigens by ELISA in just 1 of 82 symptomatic donkey foals. No additional, more comprehensive investigations have been conducted, and RVAs if circulating in donkey populations have not been molecularly characterised. OBJECTIVES To investigate if RVAs are associated with an outbreak of severe enteritis in neonatal donkeys and if associated determine the genotype(s) along with the phylogenetic relationship to RVA strains circulating in horses. STUDY DESIGN Cross-sectional. METHODS RT-PCR-based techniques were used for RVA diagnosis and gene amplification. Statistical significance was determined by Chi-square and Fisher's exact two-sided tests. Genotyping was performed by RotaC and phylogenetic analysis by neighbour joining. RESULTS In 2019, acute enteritis occurred in 119 of 206 donkey foals (≤4 months) at two intensive donkey farms in the Shandong province of China. The highest morbidity (68.1%), mortality (29.5%) and fatality levels (45.5%) occurred in foals in the 30-89 day, 30-59 day and 0-29 day age groups respectively. RVA gene sequences were detected in 107 (89.9%) of the symptomatic individuals while further analysis demonstrated the outbreak was associated with the same G3P[12] RVA strain designated RVA/Donkey-wt/CHN/Don01/2019/G3P[12]. Although the VP4 gene of Don01 exhibited close phylogenetic relationships with equivalent RVA sequences commonly circulating in horses, encoding VP7 was more closely associated with sequences isolated from bats suggesting this new donkey strain arose via an intergenogroup reassortment event. MAIN LIMITATIONS Actual prevalence not determined because <7% of asymptomatic donkey foals were included in this study. The complete genomic sequence of RVA/Donkey-wt/CHN/Don01/2019/G3P[12] remains to be determined. CONCLUSIONS Valuable new information about the molecular epidemiology of rotaviruses in different equid species is provided by isolation and molecular characterisation of a novel RVA strain from neonatal donkeys.
Collapse
Affiliation(s)
- Jianbao Dong
- Department of Veterinary Medical Science, Shandong Vocational Animal Science and Veterinary College, Weifang, China.,Research Institute of Effective-Breeding and Eco-Feeding of Donkey, College of Agronomy, Liaocheng University, Liaocheng, China.,Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Guiqin Liu
- Research Institute of Effective-Breeding and Eco-Feeding of Donkey, College of Agronomy, Liaocheng University, Liaocheng, China
| | - Nannan Gao
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Jiajia Suo
- Department of Veterinary Medical Science, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, University of Leuven, Leuven, Belgium
| | - Shuguang Li
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Dongfang Yuan
- Department of Veterinary Medical Science, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Yan Du
- Department of Veterinary Medical Science, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Jun Zhang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Nanako Yamashita
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Takeshi Haga
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Frank R Cook
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, USA
| | - Wei Zhu
- Department of Veterinary Medical Science, Shandong Vocational Animal Science and Veterinary College, Weifang, China.,Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|
5
|
Li Z, Zhao F, Tang T, Wang M, Yu X, Wang R, Li Y, Xu Y, Tang L, Wang L, Zhou H, Jiang Y, Cui W, Qiao X. Development of a Colloidal Gold Immunochromatographic Strip Assay for Rapid Detection of Bovine Rotavirus. Viral Immunol 2019; 32:393-401. [PMID: 31596683 DOI: 10.1089/vim.2019.0071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bovine rotavirus (BRV) is one of main pathogens responsible for diarrhea, fever, and vomiting. In this study, we developed a colloidal gold immunochromatographic test strip for detecting BRV according to the principle of double-antibody sandwich. The monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs) were prepared and purified. On the strip, the purified mAbs labeled with the colloidal gold were used as the detector, and the goat anti-mouse antibodies and purified pAbs were coated on the nitrocellulose membranes as the control line and the test line, respectively. We optimized different reaction conditions, including the amount of mAbs, the pH of colloidal gold solution, coating solution, blocking solution, sample pad treatment solution, antibody concentration in control line, and antibody concentration in detection line. In specificity assay, the strip had high specificity in detecting BRV. No cross-reaction was observed in detecting other viruses. The detection sensitivity of the strip was found to be 1 × 103 TCID50/0.1 mL. Two hundred twenty clinical samples were detected with the strip compared to reverse transcription-polymerase chain reaction. No false-negative or false-positive results were found, and the results obtained by the two methods were similar. In conclusion, we developed a novel immunochromatographic strip to rapidly detect BRV. The strip developed exhibited high sensitivity and specificity for BRV detection. It could be a rapid, convenient, and effective method for the rapid diagnosis of BRV infection in the fields.
Collapse
Affiliation(s)
- Zhenxue Li
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Feipeng Zhao
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tingting Tang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mengmeng Wang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoli Yu
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruichong Wang
- Heilongjiang Province Center for Disease Control and Prevention, Department of Radiological Protection, Harbin, China
| | - Yijing Li
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yigang Xu
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lijie Tang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Wang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Han Zhou
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanping Jiang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wen Cui
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyuan Qiao
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Minami-Fukuda F, Nagai M, Takai H, Murakami T, Ozawa T, Tsuchiaka S, Okazaki S, Katayama Y, Oba M, Nishiura N, Sassa Y, Omatsu T, Furuya T, Koyama S, Shirai J, Tsunemitsu H, Fujii Y, Katayama K, Mizutani T. Detection of bovine group a rotavirus using rapid antigen detection kits, rt-PCR and next-generation DNA sequencing. J Vet Med Sci 2013; 75:1651-5. [PMID: 23912876 PMCID: PMC3942952 DOI: 10.1292/jvms.13-0265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We investigated the sensitivity of human rotavirus rapid antigen detection (RAD) kits, RT-PCR and next-generation DNA sequencing (NGS) for detection of bovine group A rotavirus (RVA). The Dipstick 'Eiken' Rota (Dipstick) showed the highest sensitivity out of the seven RAD kits against all selected strains in limited dilution analyses, which was consistent with the results for equine rotavirus previously reported. RT-PCR had 10⁰-10³-fold higher sensitivity than the Dipstick. NGS using thirteen RT-PCR-negative fecal samples revealed that all samples yielded RVA reads and especially that two of them covered all 11 genome segments. Moreover, mapping reads to reference sequences allowed genotyping. The NGS would be sensitive and useful for analysis of less dependent on specific primers and screening of genotypes.
Collapse
Affiliation(s)
- Fujiko Minami-Fukuda
- Ishikawa Nanbu Livestock Hygiene Service Center, Saida, Kanazawa, Ishikawa 920-3101, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Amer HM, Abd El Wahed A, Shalaby MA, Almajhdi FN, Hufert FT, Weidmann M. A new approach for diagnosis of bovine coronavirus using a reverse transcription recombinase polymerase amplification assay. J Virol Methods 2013; 193:337-40. [PMID: 23811231 PMCID: PMC7113639 DOI: 10.1016/j.jviromet.2013.06.027] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 11/25/2022]
Abstract
Bovine coronavirus (BCoV) is an economically significant cause of calf scours and winter dysentery of adult cattle, and may induce respiratory tract infections in cattle of all ages. Early diagnosis of BCoV helps to diminish its burden on the dairy and beef industry. Real-time RT-PCR assay for the detection of BCoV has been described, but it is relatively expensive, requires well-equipped laboratories and is not suitable for on-site screening. A novel assay, using reverse transcription recombinase polymerase amplification (RT-RPA), for the detection of BCoV is developed. The BCoV RT-RPA was rapid (10-20 min) and has an analytical sensitivity of 19 molecules. No cross-reactivity with other viruses causing bovine gastrointestinal and/or respiratory infections was observed. The assay performance on clinical samples was validated by testing 16 fecal and 14 nasal swab specimens and compared to real-time RT-PCR. Both assays provided comparable results. The RT-RPA assay was significantly more rapid than the real-time RT-PCR assay. The BCoV RT-RPA constitutes a suitable accurate, sensitive and rapid alternative to the common measures used for BCoV diagnosis. In addition, the use of a portable fluorescence reading device extends its application potential to use in the field and point-of-care diagnosis.
Collapse
Affiliation(s)
- H M Amer
- Department of Botany and Microbiology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Virology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | | | | | | | | | | |
Collapse
|
8
|
Wei S, Gong Z, Che T, Guli A, Tian F. Genotyping of calves rotavirus in China by reverse transcription polymerase chain reaction. J Virol Methods 2013; 189:36-40. [DOI: 10.1016/j.jviromet.2013.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 11/28/2022]
|
9
|
Schroeder ME, Bounpheng MA, Rodgers S, Baker RJ, Black W, Naikare H, Velayudhan B, Sneed L, Szonyi B, Clavijo A. Development and performance evaluation of calf diarrhea pathogen nucleic acid purification and detection workflow. J Vet Diagn Invest 2013; 24:945-53. [PMID: 22914823 DOI: 10.1177/1040638712456976] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Calf diarrhea (scours) is a primary cause of illness and death in young calves. Significant economic losses associated with this disease include morbidity, mortality, and direct cost of treatment. Multiple pathogens are responsible for infectious diarrhea, including, but not limited to, Bovine coronavirus (BCV), bovine Rotavirus A (BRV), and Cryptosporidium spp. Identification and isolation of carrier calves are essential for disease management. Texas Veterinary Medical Diagnostic Laboratory current methods for calf diarrhea pathogen identification include electron microscopy (EM) for BCV and BRV and a direct fluorescent antibody test (DFAT) for organism detection of Cryptosporidium spp. A workflow was developed consisting of an optimized fecal nucleic acid purification and multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) for single tube concurrent detection of BCV, BRV, and Cryptosporidium spp., and an internal control to monitor nucleic acid purification efficacy and PCR reagent functionality. In "spike-in" experiments using serial dilutions of each pathogen, the analytical sensitivity was determined to be <10 TCID(50)/ml for BCV and BRV, and <20 oocysts for Cryptosporidium spp. Analytical specificity was confirmed using Canine and Feline coronavirus, Giardia spp., and noninfected bovine purified nucleic acid. Diagnostic sensitivity was ≥98% for all pathogens when compared with respective traditional methods. The results demonstrate that the newly developed assay can purify and subsequently detect BCV, BRV, and Cryptosporidium spp. concurrently in a single PCR, enabling simplified and streamlined calf diarrhea pathogen identification.
Collapse
Affiliation(s)
- Megan E Schroeder
- Texas Veterinary Medical Diagnostic Laboratory, 1 Sippel Road, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Xie Z, Fan Q, Liu J, Pang Y, Deng X, Xie Z, Liji X, Khan MI. Reverse transcription loop-mediated isothermal amplification assay for rapid detection of Bovine Rotavirus. BMC Vet Res 2012; 8:133. [PMID: 22894568 PMCID: PMC3599620 DOI: 10.1186/1746-6148-8-133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 06/29/2012] [Indexed: 11/27/2022] Open
Abstract
Background Bovine rotavirus (BRV) infection is common in young calves. This viral infection causes acute diarrhea leading to death. Rapid identification of infected calves is essential to control BRV successfully. Therefore development of simple, highly specific, and sensitive detection method for BRV is needed. Results A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed and optimized for rapid detection of BRV. Specific primer sets were designed to target the sequences of the VP6 gene of the neonatal calf diarrhea virus (NCDV) strain of BRV. The RT-LAMP assay was performed in a water bath for 60 minutes at 63°C, and the amplification products were visualized either directly or under ultraviolet light. This BRV specific RT-LAMP assay could detect 3.32 copies of subtype A BRV. No cross-reactions were detected with other bovine pathogens. The ability of RT-LAMP to detect bovine rotavirus was further evaluated with 88 bovine rectal swab samples. Twenty-nine of these samples were found to be positive for BRV using RT-LAMP. The BRV-specific-RT-LAMP results were also confirmed by real-time RT-PCR assay. Conclusions The bovine rotavirus-specific RT-LAMP assay was highly sensitive and holds promise as a prompt and simple diagnostic method for the detection of group A bovine rotavirus infection in young calves.
Collapse
Affiliation(s)
- Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, 51 You Ai Road, Nanning, Guangxi, 530001, China.
| | | | | | | | | | | | | | | |
Collapse
|