1
|
Eskeland S, Bø-Granquist EG, Stuen S, Lybeck K, Wilhelmsson P, Lindgren PE, Makvandi-Nejad S. Temporal patterns of gene expression in response to inoculation with a virulent Anaplasma phagocytophilum strain in sheep. Sci Rep 2023; 13:20399. [PMID: 37989861 PMCID: PMC10663591 DOI: 10.1038/s41598-023-47801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to characterize the gene expression of host immune- and cellular responses to a Norwegian virulent strain of Anaplasma phagocytophilum, the cause of tick-borne fever in sheep. Ten sheep were intravenously inoculated with a live virulent strain of A. phagocytophilum. Clinical-, observational-, hematological data as well as bacterial load, flow cytometric cell count data from peripheral blood mononuclear cells and host's gene expression post infection was analysed. The transcriptomic data were assessed for pre-set time points over the course of 22 days following the inoculation. Briefly, all inoculated sheep responded with clinical signs of infection 3 days post inoculation and onwards with maximum bacterial load observed on day 6, consistent with tick-borne fever. On days, 3-8, the innate immune responses and effector processes such as IFN1 signaling pathways and cytokine mediated signaling pathways were observed. Several pathways associated with the adaptive immune responses, namely T-cell activation, humoral immune responses, B-cell activation, and T- and B-cell differentiation dominated on the days of 8, 10 and 14. Flow-cytometric analysis of the PBMCs showed a reduction in CD4+CD25+ cells on day 10 and 14 post-inoculation and a skewed CD4:CD8 ratio indicating a reduced activation and proliferation of CD4-T-cells. The genes of important co-stimulatory molecules such as CD28 and CD40LG, important in T- and B-cell activation and proliferation, did not significantly change or experienced downregulation throughout the study. The absence of upregulation of several co-stimulatory molecules might be one possible explanation for the low activation and proliferation of CD4-T-cells during A. phagocytophilum infection, indicating a suboptimal CD4-T-cell response. The upregulation of T-BET, EOMES and IFN-γ on days 8-14 post inoculation, indicates a favoured CD4 Th1- and CD8-response. The dynamics and interaction between CD4+CD25+ and co-stimulatory molecules such as CD28, CD80, CD40 and CD40LG during infection with A. phagocytophilum in sheep needs further investigation in the future.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway.
| | - Erik G Bø-Granquist
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Kari Lybeck
- Norwegian Veterinary Institute, Elizabeth Stephansens Vei 1, 1433, Ås, Norway
| | - Peter Wilhelmsson
- Division of Clinical Microbiology, Laboratory Medicine, National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Region Jönköping County, 553 05, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | | |
Collapse
|
2
|
Ma X, Liu H, Jia Q, Zheng Y, Li W, Chang M, Fu H, Zhu H. Diverse roles of glucocorticoids in the ruminant mammary gland: modulation of mammary growth, milk production, and mastitis. Stress 2023; 26:2252938. [PMID: 37632459 DOI: 10.1080/10253890.2023.2252938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/23/2023] [Indexed: 08/28/2023] Open
Abstract
As endocrine hormones, glucocorticoids (GCs) play a pivotal role in numerous physiological processes, including mammary growth and lactation, circulatory metabolism, and responses to external stimuli. In the dairy industry, milk production from cows or goats is important for newborns and economic benefits. However, the milk yields from ruminant animals are always affected by the extent of mammary development, mammary disease, stress, or changes in metabolism. Thus, it is necessary to clarify how GCs changes in ruminants affect ruminant mammary gland function and mammary disease. This review summarizes the findings identifying that GCs modulate mammary gland development before lactation, but the stress-induced excessive release of GCs leads to milk production loss. In addition, the manner of GCs release may change under different concentrations of metabolites or during mastitis or inflammatory challenge. Nevertheless, exogenous GCs administration to animals may alleviate the clinical symptoms of mastitis. This review demonstrates that GCs offer a fascinating contribution to both physiologic and pathogenic conditions of the mammary gland in ruminant animals. Characterizing and understanding these changes or functions of endogenous and exogenous GCs in animals will be crucial for developing more endocrine regulators and therapies for improving milk production in ruminants.
Collapse
Affiliation(s)
- Xiaoyue Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hanling Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Jia
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yumiao Zheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wentao Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengyu Chang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haixia Fu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Oyamada Y, Iizasa E, Usa A, Otomaru K. 1,25-Dihydroxyvitamin D 3 potentiates the innate immune response of peripheral blood mononuclear cells from Japanese Black cattle. Anim Sci J 2023; 94:e13906. [PMID: 38110290 DOI: 10.1111/asj.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
1,25-Dihydroxyvitamin D3 (1,25(OH)2 D3 ), a bioactive vitamin D, is known to regulate immune responses in mammals. However, its impact on the innate immune responses of Japanese Black cattle, which are beef cattle endemic to Japan, remains unknown. Thus, in this study, we investigated the effect of 1,25(OH)2 D3 on the immune responses of peripheral blood mononuclear cells from Japanese Black cattle. As a result, the treatment of 1,25(OH)2 D3 upregulated the expression of antibacterial peptides, bovine beta-defensin 10 (DEFB10), and lingual antimicrobial peptide (LAP), in the presence and absence of lipopolysaccharide (LPS) stimulation. Moreover, 1,25(OH)2 D3 enhanced the inflammatory responses, including C-X-C motif ligand 8 (CXCL8) and nitric oxide synthase (NOS2), while reducing the expression of anti-inflammatory cytokine IL10, leading to an inflammatory phenotype. However, in contrast to humans and mice, 1,25(OH)2 D3 did not alter the expression of tumor necrosis factor (TNF) and downregulated triggering receptor expressed on myeloid cell 1 (TREM1) with LPS treatment. These results suggest that 1,25(OH)2 D3 potentiates the innate immune responses of Japanese Black cattle, albeit with different effects and mechanisms as compared to humans and mice.
Collapse
Affiliation(s)
- Youki Oyamada
- Division of Psychosomatic Internal Medicine, Department of Social and Behavioral Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ei'ichi Iizasa
- Division of Psychosomatic Internal Medicine, Department of Social and Behavioral Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Amane Usa
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Wang X, Tang M, Zhang Y, Li Y, Mao J, Deng Q, Li S, Jia Z, Du L. Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils. J Vet Sci 2022; 23:e76. [PMID: 36174980 PMCID: PMC9523333 DOI: 10.4142/jvs.22112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Background Clinical dexamethasone (DEX) treatment or stress in bovines results in extensive physiological changes with prominent hyperglycemia and neutrophils dysfunction. Objectives To elucidate the effects of DEX treatment in vivo on cellular energy status and the underlying mechanism in circulating neutrophils. Methods We selected eight-month-old male bovines and injected DEX for 3 consecutive days (1 time/d). The levels of glucose, total protein (TP), total cholesterol (TC), and the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in blood were examined, and we then detected glycogen and adenosine triphosphate (ATP) content, phosphofructosekinase-1 (PFK1) and glucose-6-phosphate dehydrogenase (G6PDH) activity, glucose transporter (GLUT)1, GLUT4, sodium/glucose cotransporter (SGLT)1 and citrate synthase (CS) protein expression and autophagy levels in circulating neutrophils. Results DEX injection markedly increased blood glucose, TP and TC levels, the Ca2+/P5+ ratio and the neutrophil/lymphocyte ratio and significantly decreased blood IL-1β, IL-6 and TNF-α levels. Particularly in neutrophils, DEX injection inhibited p65-NFκB activation and elevated glycogen and ATP contents and SGLT1, GLUT1 and GR expression while inhibiting PFK1 activity, enhancing G6PDH activity and CS expression and lowering cell autophagy levels. Conclusions DEX induced neutrophils glucose uptake by enhancing SGLT1 and GLUT1 expression and the transformation of energy metabolism from glycolysis to pentose phosphate pathway (PPP)-tricarboxylic acid (TCA) cycle. This finding gives us a new perspective on deeper understanding of clinical anti-inflammatory effects of DEX on bovine.
Collapse
Affiliation(s)
- Xinbo Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Mingyu Tang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yuming Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China.,Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yansong Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jingdong Mao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Qinghua Deng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China.,Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Shusen Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhenwei Jia
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Liyin Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China.,Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Inner Mongolia Minzu University, Tongliao 028000, China.
| |
Collapse
|
5
|
Word AB, Broadway PR, Burdick Sanchez NC, Hutcheson JP, Ellis GB, Holland BP, Ballou MA, Carroll JA. Acute immunologic and metabolic responses of beef heifers following topical administration of flunixin meglumine at various times relative to bovine herpesvirus 1 and Mannheimia haemolyticachallenges. Am J Vet Res 2020; 81:243-253. [DOI: 10.2460/ajvr.81.3.243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Hanna DA, Khalaf MM, Abo-Saif AA. Polydatin protects against ovalbumin-induced bronchial asthma in rats; involvement of urocortin and surfactant-D expression. Immunopharmacol Immunotoxicol 2018; 41:403-412. [PMID: 30422021 DOI: 10.1080/08923973.2018.1536985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Context: Prevalence of bronchial asthma massively increases worldwide, while the frequent therapies are still not sufficient. Polydatin, a naturally occurring glycoside, was known as to have anti-inflammatory and anti-oxidant effects. Objective: The current study aimed to investigate the possible protective effect of polydatin against experimental bronchial asthma in rats. Material and methods: Bronchial asthma was induced by ovalbumin (OVA) sensitization and challenge. Rats were randomly allocated into five groups; Group I (normal control group); Group II (asthma control group) received OVA; Group III (reference standard treatment group) received dexamethasone (1 mg/kg/day); Group IV (treatment group) received polydatin (200/mg/kg); and Group V (polydatin control group). The inflammatory biomarkers interleukin-4 (IL-4), IL-5, IL-13, tumor necrosis factor-alpha, interferon-gamma and absolute eosinophil count in bronchoalveolar lavage fluid (BALF), as well as serum immunoglobulin E were assessed, coupled with the oxido-nitrative stress biomarkers malondialdehyde and glutathione reduced levels and superoxide dismutase activity in the lung tissue, besides inducible nitric oxide synthase level in BALF. Western blot analysis of surfactant-D and immunohistochemical assay of urocortin (UCN) expression in the lung was performed. Results: Polydatin significantly reduced the inflammatory mediators and restored the normal values of oxidative and nitrosative stress biomarkers. It also significantly reduced the expression of surfactant-D and UCN as compared to asthma control. The histopathological study strongly augmented the biochemical results. Discussion and conclusions: Polydatin may be a promising protective agent against experimentally induced bronchial asthma. Modulation of SP-D and UCN expressions seems to mediate such protective effects.
Collapse
Affiliation(s)
- Dina A Hanna
- a Department of Pharmacology and Toxicology Faculty of Pharmacy , Nahda University , Beni-Suef , Egypt
| | - Marwa M Khalaf
- b Department of Pharmacology and Toxicology Faculty of Pharmacy , Beni-Suef University , Beni-Suef , Egypt
| | - Ali A Abo-Saif
- a Department of Pharmacology and Toxicology Faculty of Pharmacy , Nahda University , Beni-Suef , Egypt
| |
Collapse
|
7
|
Kaczmar E, Rychlik A, Szweda M. The evaluation of three treatment protocols using oral prednisone and oral meloxicam for therapy of canine idiopathic lymphoplasmacytic rhinitis: a pilot study. Ir Vet J 2018; 71:19. [PMID: 30305889 PMCID: PMC6169010 DOI: 10.1186/s13620-018-0131-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/26/2018] [Indexed: 11/10/2022] Open
Abstract
Background Idiopathic lymphoplasmacytic rhinitis (LPR) is a common inflammatory disorder of the nasal cavity in dogs due to unknown etiology. It is characterised by non-specific clinical signs, including nasal discharge, epistaxis and breathing problems. Diagnosis is usually based on the histopathologic identification of infiltrating plasmocytes and lymphocytes in the nasal mucosa and the exclusion of other underlying diseases. Treatment strategies include glucocorticoids, non-steroidal anti-inflammatory drugs, antibiotics and antifungal medications. The aim of this study was to evaluate the efficacy of various therapeutic protocols for managing canine lymphoplasmacytic rhinitis based on the results of clinical, endoscopic and histological examinations, and to determine the relapse rate for LPR in dogs. Twenty dogs of different breeds and both sexes, aged 1 to 14 years, were divided into four groups, each consisting of five dogs, including three experimental groups diagnosed with LPR and a control group. The dogs from the first experimental group were administered prednisone orally at 1 mg/kg/day in the first 4 weeks and 0,5 mg/kg/day in the following 2 weeks. The second group of dogs was administered meloxicam orally at 0,1 mg/kg/day in the first 3 weeks, followed by prednisone at 1 mg/kg/day in the following 2 weeks and 0,5 mg/kg/day in the last week of the treatment. The dogs from the third experimental group were administered meloxicam orally at 0,1 mg/kg/day for 6 weeks. The control group of dogs was administered empty gelatin capsules (placebo) orally for 6 weeks. Clinical signs, endoscopic and histopathologic lesions were scored before and after treatment. Groups were compared using Chi- squared statistics in a 2 × 2 table for pre- versus post-treatment scores. Results Clinical signs persisted in the group treated with meloxicam and were mostly resolved in prednisone-treated dogs. However, endoscopic and histological changes were still observed in these two groups after treatment. The severity of all diagnostic features was reduced in the group treated with meloxicam for 3 weeks followed by prednisone for 3 weeks. The significant differences (p < 0.05) were noted between experimental and control groups. The dogs showed a statistically significant reduction in characteristics of the LPR before and after treatment, as measured by clinical signs (Group 1vs.4 p = 0.00, group 2 vs 4 p = 0.00, group 3 vs 4 p = 0,01), by endoscopy (1 vs 4 p = 0,01, 2 vs 4 p = 0,00, 3 vs 4 p = 0,03), and by histopathology (groups 1 vs 4 p = 0,00, 2 vs 4 p = 0,00, 3 vs 4 p = 0,03). The significant differences were noted between experimental groups, as measured by endoscopy (group 2vs 3 p = 0,04), and by relapse rate (groups 1 and 2 p = 0,03, groups 2 and 3 p = 0,01). Conclusions The three treatment protocols administered to dogs improved clinical, endoscopic and histological status. However, oral administration of meloxicam for 3 weeks, followed by prednisone for 3 weeks, appeared to be the most successful treatment. These patients remained asymptomatic for 6 months.
Collapse
Affiliation(s)
- Ewa Kaczmar
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
| | - Andrzej Rychlik
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
| | - Marta Szweda
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
| |
Collapse
|
8
|
Plessers E, Watteyn A, Wyns H, Pardon B, De Backer P, Croubels S. Study of the immunomodulatory properties of gamithromycin and dexamethasone in a lipopolysaccharide inflammation model in calves. Res Vet Sci 2015; 103:218-23. [PMID: 26679821 DOI: 10.1016/j.rvsc.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 01/08/2023]
Abstract
The aim of this study was to define the in vivo immunomodulatory properties of the macrolide antibiotic gamithromycin in calves, with respect to the acute phase response. Additionally, the corticosteroid dexamethasone was included as a positive control immunomodulatory drug. Both drugs, as well as their combination,were studied in a previously developed inflammation model,which was initiated by an intravenous lipopolysaccharide (LPS) challenge (0.5 μg/kg body weight). Twenty-four 4-week-old male Holstein Friesian calves were randomized into four groups: no pharmacological treatment (n = 6) or a pharmacological treatment with gamithromycin (n= 6), dexamethasone (n= 6) or their combination (n= 6) 1 h prior to LPS administration. Blood collection and clinical scoring were performed at regular time points until 72 h post LPS challenge. Plasma concentrations of selected cytokines (tumour necrosis factor-α (TNF-α) and interleukin 6 (IL-6)) and acute phase proteins (serum amyloid A and haptoglobin) were subsequently determined. Gamithromycin did not have any beneficial effect on the LPS-induced clinical signs (dyspnea, fever, anorexia and depression), nor on the studied inflammatory mediators. In the dexamethasone and combination groups, the occurrence of dyspnea and fever was not prominently influenced, although the calves recovered significantly faster from the challenge. Moreover, dexamethasone significantly inhibited the levels of TNF-α and IL-6, suggesting a key role for these cytokines in sickness behaviour. In conclusion, unlike dexamethasone, gamithromycin did not directly reduce cytokine release in an LPS inflammation model in calves.
Collapse
Affiliation(s)
- E Plessers
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - A Watteyn
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - H Wyns
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - B Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - P De Backer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - S Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
9
|
Sipka A, Gurjar A, Klaessig S, Duhamel GE, Skidmore A, Swinkels J, Cox P, Schukken Y. Prednisolone and cefapirin act synergistically in resolving experimental Escherichia coli mastitis. J Dairy Sci 2013; 96:4406-18. [PMID: 23684040 DOI: 10.3168/jds.2012-6455] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/02/2013] [Indexed: 01/22/2023]
Abstract
Mastitis in dairy cows is typically treated with intramammary antibiotics. The combination of antibiotics with corticosteroids tends to have a large market share where these products are registered. Our objective was to investigate the effect of prednisolone in combination with cefapirin on the inflammatory response of experimentally induced Escherichia coli mastitis. Six midlactating Holstein-Friesian cows were challenged in 3 quarters with E. coli and treated at 4, 12, 24, and 36 h postinfection with 300 mg of cefapirin in 1 quarter and a combination of 300 mg of cefapirin and 20mg of prednisolone in another quarter. At 24h (n=3) or 48 h (n=3) postinfection cows were euthanized for tissue sampling. Clinical scores, somatic cell count, and California mastitis test scores, as well as IL-1β, IFN-γ, IL-4, and IL-10 levels and bacterial growth in milk, were measured every 6h. Experimental inoculation caused a moderate clinical mastitis in all cows in challenged, untreated quarters. The E. coli challenge strain was recovered from all infected quarters and confirmed by PCR-based fingerprinting. Challenged, untreated control quarters showed increased concentrations of all measured cytokines together with recruitment of polymorphonuclear neutrophilic leukocytes at 24 and 48 h postchallenge. Both treatments reduced udder swelling and sensitivity with no statistically significant difference between treatment groups. Administration of cefapirin alone or in combination with prednisolone resulted in significantly lower concentrations of IFN-γ, IL-1β, and IL-10 compared with challenged, untreated quarters. Treated quarters did show IL-4 production, but concentrations were significantly decreased compared with untreated, challenged quarters. Quarters treated with the combination of cefapirin and prednisolone showed a significantly lower concentration of IL-4 compared with cefapirin-only treatment. At both 24 and 48 h postinoculation, the level of polymorphonuclear neutrophilic leukocyte recruitment was lowest in challenged quarters treated with a combination of cefapirin and prednisolone, followed by cefapirin alone. Taken together, treatment with cefapirin alone inhibited bacterial growth in milk and reduced the host inflammatory responses. Addition of prednisolone to cefapirin had a synergistic effect, resulting in a lower density of leukocytes in tissue and milk and a quicker restoration of milk quality.
Collapse
Affiliation(s)
- Anja Sipka
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Maślanka T, Jaroszewski JJ. In vitro effects of meloxicam on the number, Foxp3 expression, production of selected cytokines, and apoptosis of bovine CD25+CD4+ and CD25-CD4+ cells. J Vet Sci 2013; 14:125-34. [PMID: 23628659 PMCID: PMC3694183 DOI: 10.4142/jvs.2013.14.2.125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 08/30/2012] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to evaluate the effect of meloxicam (MEL) on selected immune parameters of bovine CD25highCD4+, CD25lowCD4+, and CD25-CD4+ cells. Peripheral blood mononuclear cells (PBMCs) collected from 12-month-old heifers were treated with MEL at a concentration corresponding to the serum level of this medication following administration at the recommended dose (MEL 5 × 10-6 M) and at a concentration 10 times lower (MEL 5 × 10-7 M). After 12 and 24 h of incubation with the drug, the percentage of CD25highCD4+ cells decreased; however, this disturbance was quickly reversed. Furthermore, the absolute number of CD25highCD4+ cells in the PBMC populations treated with MEL 5 × 10-6 M for 48 and 168 h was increased. Prolonged (168 h) exposure to the drug increased the percentage of Foxp3+ cells in the CD25highCD4+ cell subpopulation. The higher dose of MEL was found to significantly increase the percentage of IFN-γ+ cells among the CD25-CD4+ cells. These results indicated that MEL does not exert an immunosuppressive effect by depleting CD4+ cells and suppression of IFN-γ+ production by these cells. Furthermore, IL-10 and TGF-β production was not changed following exposure to MEL.
Collapse
Affiliation(s)
- Tomasz Maślanka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn 10-718, Poland.
| | | |
Collapse
|