1
|
Abstract
Spontaneous tumors in dogs share several environmental, epidemiologic, biologic, clinical and molecular features with a wide variety of human cancers, making this companion animal an attractive model. Nuclear factor kappa B (NF-kB) transcription factor overactivation is common in several human cancers, and there is evidence that similar signaling aberrations also occur in canine cancers including lymphoma, leukemia, hemangiosarcoma, mammary cancer, melanoma, glioma, and prostate cancer. This review provides an overview of NF-kB signaling biology, both in health and in cancer development. It also summarizes available evidence of aberrant NF-kB signaling in canine cancer, and reviews antineoplastic compounds that have been shown to inhibit NF-kB activity used in various types of canine cancers. Available data suggest that dogs may be an excellent model for human cancers that have overactivation of NF-kB.
Collapse
|
2
|
Stein L, Bacmeister C, Ylaya K, Fetsch P, Wang Z, Hewitt SM, Kiupel M. Immunophenotypic Characterization of Canine Splenic Follicular-Derived B-Cell Lymphoma. Vet Pathol 2019; 56:350-357. [PMID: 30636524 DOI: 10.1177/0300985818823668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Marginal zone lymphoma (MZL) and mantle cell lymphoma (MCL) belong to a subgroup of indolent B-cell lymphomas most commonly reported in the canine spleen. The goal of this study was to characterize the immunophenotype of splenic MZL and MCL in comparison to their human counterparts. Ten MCLs and 28 MZLs were selected based on morphology. A tissue microarray was generated, and expression of CD3, CD5, CD10, CD45, CD20, CD79a, Pax-5, Bcl-2, Bcl-6, cyclin D1, cyclin D3, MCL-1, MUM-1, and Sox-11 was evaluated. Neoplastic cells in all MCLs and MZLs were positive for CD5, CD20, CD45, CD79a, and BCL2 and negative for CD3, CD10, Bcl-6, cyclin D1, and cyclin D3. Positive labeling for Pax-5 was detected in 8 of 10 MCLs and 26 of 28 MZLs. Positive labeling for MUM-1 was detected in 3 of 10 MCLs, and 27 of 28 MZLs were positive for MUM-1. No MCLs but 8 of 24 MZLs were positive for MCL-1. Canine splenic MZL and MCL have a similar immunophenotype as their human counterparts. However, human splenic MCL overexpresses cyclin D1 due to a translocation. A similar genetic alteration has not been reported in dogs. In addition, in contrast to human MZL, canine splenic MZL generally expresses CD5. Following identification of B vs T cells with CD20 and CD3, a panel composed of BCL-2, Bcl-6, MUM-1, and MCL-1 combined with the histomorphological pattern can be used to accurately diagnose MZL and MCL in dogs. Expression of Bcl-2 and lack of MCL-1 expression in MCL may suggest a therapeutic benefit of BCL-2 inhibitors in canine MCL.
Collapse
Affiliation(s)
- Leah Stein
- 1 Michigan State University Veterinary Diagnostic Laboratory and Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | | | - Kris Ylaya
- 3 Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Fetsch
- 3 Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zengfeng Wang
- 3 Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M Hewitt
- 3 Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matti Kiupel
- 1 Michigan State University Veterinary Diagnostic Laboratory and Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Garraway K, Johannes CM, Bryan A, Peauroi J, Rossi G, Zhang M, Wang C, Allenspach K, Jergens AE. Relationship of the mucosal microbiota to gastrointestinal inflammation and small cell intestinal lymphoma in cats. J Vet Intern Med 2018; 32:1692-1702. [PMID: 30084202 PMCID: PMC6189339 DOI: 10.1111/jvim.15291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/13/2018] [Accepted: 06/27/2018] [Indexed: 12/23/2022] Open
Abstract
Background The gastrointestinal (GI) microbiota in healthy cats is altered in IBD. Little research has been performed to identify whether specific bacterial groups are associated with small cell GI lymphoma (LSA). Hypothesis Mucosal bacteria, including Enterobacteriaceae and Fusobacterium spp., are abundant in intestinal biopsies of cats with small cell GI LSA compared to cats with IBD. Animals Fourteen cats with IBD and 14 cats with small cell GI LSA. Methods Retrospective case control study. A search of the medical records was performed to identify cats diagnosed with IBD and with GI LSA. Bacterial groups identified by FISH in GI biopsies were compared between cohorts and correlated to CD11b+ and NF‐κB expression. Results Fusobacterium spp. (median; IQR bacteria/region) were higher in cats with small cell GI LSA in ileal (527; 455.5 – 661.5; P = .046) and colonic (404.5; 328.8 – 455.5; P = .016) adherent mucus, and combined colonic compartments (free mucus, adherent mucus, attaching to epithelium) (8; 0 – 336; P = .017) compared to cats with IBD (ileum: 67; 31.5 – 259; colon: 142.5; 82.3 – 434.5; combined: 3; 0 – 34). Bacteroides spp. were higher in ileal adherent mucus (P = .036) and 3 combined ileal compartments (P = .034) of cats with small cell GI LSA. There were significant correlations between Fusobacterium spp. totals and CD11b+ cell (P = .009; rs .476) and NF‐κB expression (P = .004; rs .523). Conclusions The bacterial alterations appreciated might be influential in development of small cell GI LSA, and should drive further studies to elucidate the effects of microbial‐mediated inflammation on GI cancer progression.
Collapse
Affiliation(s)
- Kayode Garraway
- Iowa State University, College of Veterinary Medicine, Ames, IA
| | | | - Angela Bryan
- College of Veterinary Medicine, Iowa State University
| | - John Peauroi
- VDx Veterinary Diagnostics and Preclinical Research Services
| | - Giacomo Rossi
- School of Biosciences & Veterinary Medicine, University of Camerino, Italy
| | - Min Zhang
- Department of Statistics, College of Liberal Arts & Sciences, Iowa State University
| | - Chong Wang
- Department of Statistics, College of Liberal Arts & Sciences, Iowa State University
| | | | | |
Collapse
|
4
|
Matos A, Santos A. Advances in the understanding of the clinically relevant genetic pathways and molecular aspects of canine mammary tumours: Part 1. Proliferation, apoptosis and DNA repair. Vet J 2015; 205:136-43. [DOI: 10.1016/j.tvjl.2015.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 02/09/2023]
|
5
|
Wang H, Yang X, Jin Y, Pei S, Zhang D, Ma W, Huang J, Qiu H, Zhang X, Jiang Q, Sun W, Zhang H, Lin D. Expression and significance of CHIP in canine mammary gland tumors. J Vet Med Sci 2015; 77:1465-71. [PMID: 26156079 PMCID: PMC4667665 DOI: 10.1292/jvms.14-0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CHIP (Carboxy terminus of Hsc70 Interacting Protein) is an E3 ubiquitin ligase that can
induce ubiquitination and degradation of several oncogenic proteins. The expression of
CHIP is frequently lower in human breast cancer than in normal breast tissue. However, the
expression and role of CHIP in the canine mammary gland tumor (CMGT) remain unclear. We
investigated the potential correlation between CHIP expression and mammary gland tumor
prognosis in female dogs. CHIP expression was measured in 54 dogs by immunohistochemistry
and real-time RT-PCR. CHIP protein expression was significantly correlated with the
histopathological diagnosis, outcome of disease and tumor classification. The
transcriptional level of CHIP was significantly higher in normal tissues
(P=0.001) and benign tumors (P=0.009) than it in
malignant tumors. CHIP protein expression was significantly correlated with the
transcriptional level of CHIP (P=0.0102). The log-rank
test survival curves indicated that patients with low expression of CHIP had shorter
overall periods of survival than those with higher CHIP protein expression
(P=0.050). Our data suggest that CHIP may play an important role in the
formation and development of CMGTs and serve as a valuable prognostic marker and potential
target for genetic therapy.
Collapse
Affiliation(s)
- Huanan Wang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Raposo TP, Beirão BCB, Pang LY, Queiroga FL, Argyle DJ. Inflammation and cancer: till death tears them apart. Vet J 2015; 205:161-74. [PMID: 25981934 DOI: 10.1016/j.tvjl.2015.04.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 01/19/2023]
Abstract
Advances in biotechnology have enabled the collection of an immeasurable amount of information from genomic, transcriptomic, metabolomic and proteomic studies of tumours within their microenvironments. The dissection of cytokine and chemokine networks has provided new clues to the interactions between cancer cells and their surrounding inflammatory landscape. To bridge the gap between chronic inflammation and cancer, dynamic participants in the tumour microenvironment have been identified, including tumour-associated macrophages (TAMs) and regulatory T cells (Tregs). Both of these cell types are notable for their ability to cause immunosuppressive conditions and support the evasion of tumour immune surveillance. It is clear now that the tumour-promoting inflammatory environment has to be included as one of the major cancer hallmarks. This review explores the recent advances in the understanding of cancer-related inflammation and how this is being applied to comparative oncology studies in humans and domestic species, such as the dog.
Collapse
Affiliation(s)
- T P Raposo
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom; Center for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - B C B Beirão
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - L Y Pang
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - F L Queiroga
- Center for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - D J Argyle
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, United Kingdom.
| |
Collapse
|