1
|
Liu T, Lin H, Zhu L, Yang DA, Yao H, Pan Z. Accuracy of real-time PCR for the detection of paratuberculosis in actual samples: A systematic review and meta-analysis. Prev Vet Med 2025; 237:106436. [PMID: 39842219 DOI: 10.1016/j.prevetmed.2025.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Paratuberculosis, an infectious and chronic ailment that affects ruminants, causes significant annual economic losses to the livestock industry. Early diagnosis and prompt culling are the primary measures for controlling this disease, highlighting the need for accurate and rapid diagnostic methods. This systematic review and meta-analysis aimed to evaluate the efficacy of quantitative PCR (qPCR) in the diagnosis of paratuberculosis. We searched for and selected articles from databases including PubMed, Web of Science, Elsevier ScienceDirect, Wiley-Blackwell, Springerlink, AGRICOLA, and CAB Abstracts, with VETQUADAS (VQ) employed to assess the quality of the literature. Meta-analysis and heterogeneity investigation were conducted using the "Meta4diag" package in "R" software, Meta-Disc 2.0, and Meta-Disc, while the Deeks' test was utilized to detect publication bias. The studies included in the systematic review displayed a moderate level of heterogeneity (I² = 48.6 %) with no significant publication bias (p = 0.998). The pooled sensitivity was determined to be 0.92 [95 % confidence interval [CI], 0.85-0.96], and the specificity was 0.85 [95 % CI, 0.77-0.91], with a summary receiver operating characteristic area under the curve (SROCAUC) of 0.95 [95 % CI, 0.91-0.98]. These findings indicate that the qPCR method has high diagnostic value for identifying paratuberculosis in animals. Subgroup analysis revealed satisfactory stability in these studies; however, the current single-target qPCR detection strategy still has limitations, as it fails to simultaneously ensure both sensitivity and specificity. Future developments should focus on multi-target detection strategies to provide more reliable qPCR testing methods for controlling paratuberculosis.
Collapse
Affiliation(s)
- Tian Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210095, China.
| | - Hanyu Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210095, China.
| | - Lingling Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210095, China.
| | - D Aaron Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210095, China.
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210095, China.
| |
Collapse
|
2
|
Kawaguchi R, Ueno Y, Kurita K, Wako T, Mori Y, Ogawa Y. Draft genome sequence of Mycobacterium intracellulare strain HYG9370 isolated from Japanese Black Cattle in Japan. Microbiol Resour Announc 2025; 14:e0094624. [PMID: 39655929 PMCID: PMC11737172 DOI: 10.1128/mra.00946-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
Here, we report the draft genome sequence of Mycobacterium intracellulare strain HYG9370 (ID: JD563) isolated from a clinically healthy Japanese Black steer. The genome information of this strain provides valuable insights into the genetic diversity of M. intracellulare, which has been isolated from multiple hosts and environments.
Collapse
Affiliation(s)
- Reiko Kawaguchi
- Himeji Livestock Hygiene Service Center, Himeji, Hyogo, Japan
| | - Yuichi Ueno
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kanako Kurita
- Institute of Crop Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Toshiyuki Wako
- Institute of Crop Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yasuyuki Mori
- ZEN-NOH Institute of Animal Health, National Federation of Agricultural Cooperative Associations, Sakura, Chiba, Japan
| | - Yohsuke Ogawa
- Sapporo Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Complete Genome Sequence of Mycobacterium avium subsp. paratuberculosis Strain 42-13-1, Isolated in Japan. Microbiol Resour Announc 2021; 10:10/15/e00084-21. [PMID: 33858919 PMCID: PMC8050961 DOI: 10.1128/mra.00084-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of Mycobacterium avium subsp. paratuberculosis strain 42-13-1, isolated from cattle presenting with chronic diarrhea caused by Johne’s disease in Japan, which was assembled via long- and short-read hybrid assembly. Here, we report the complete genome sequence of Mycobacterium avium subsp. paratuberculosis strain 42-13-1, isolated from cattle presenting with chronic diarrhea caused by Johne’s disease in Japan, which was assembled via long- and short-read hybrid assembly.
Collapse
|
4
|
Sajiki Y, Konnai S, Nagata R, Kawaji S, Nakamura H, Fujisawa S, Okagawa T, Maekawa N, Kato Y, Suzuki Y, Murata S, Mori Y, Ohashi K. The enhancement of Th1 immune response by anti-PD-L1 antibody in cattle infected with Mycobacterium avium subsp. paratuberculosis. J Vet Med Sci 2020; 83:162-166. [PMID: 33281144 PMCID: PMC7972883 DOI: 10.1292/jvms.20-0590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Johne's disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a chronic enteritis of ruminants. Previous studies have shown that programmed death-ligand 1 (PD-L1) is associated with the disease progression, and PD-L1 blockade activates MAP-specific Th1 responses in vitro. Here, we performed anti-PD-L1 antibody administration using 2 MAP-infected cattle at the late subclinical stage of infection. After administration, bacterial shedding was reduced or maintained at a low level. Additionally, MAP-specific Th1 cytokine production was upregulated, and CD69 expression was increased in T cells. Collectively, the treatment has a potential as a novel control method against Johne's disease.
Collapse
Affiliation(s)
- Yamato Sajiki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Reiko Nagata
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
| | - Satoko Kawaji
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
| | - Hayato Nakamura
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.,Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0019, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Yasuyuki Mori
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
5
|
A Novel Real-Time PCR-Based Screening Test with Pooled Fecal Samples for Bovine Johne's Disease. J Clin Microbiol 2020; 58:JCM.01761-20. [PMID: 32938740 DOI: 10.1128/jcm.01761-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
Johne's disease (JD) is an economically important infectious disease in livestock farming caused by Mycobacterium avium subsp. paratuberculosis As an alternative to serological tests, which are used mainly for the screening of whole herds, we developed a novel ResoLight-based real-time PCR (RL-PCR) assay with pooled fecal samples for the detection of fecal shedders in cattle herds. The RL-PCR assay included an internal amplification control (IC) which was amplified using the same primer pair as the target molecule M. avium subsp. paratuberculosis IS900 and differentiated based on melting temperatures. Individual fecal suspensions were pooled and concentrated by centrifugation to avoid a loss of sensitivity by the dilution effect. Combined with a DNA extraction kit (Johne-PureSpin; FASMAC), no inhibition of PCR amplification was observed with up to 15 fecal samples in a pool. The detection limit of RL-PCR at a pool size of 10 was 10 M. avium subsp. paratuberculosis organisms per gram of feces, which was comparable to that of individual testing. A total of 2,654 animals in 12 infected herds were screened by individual antibody-enzyme-linked immunosorbent assay (ELISA) and the RL-PCR assay using pooled feces. Fifty animals were diagnosed with JD through the screening by RL-PCR, compared with only 5 by ELISA (which were also positive in RL-PCR). In 7 JD-free herds, the results of 4 out of 327 pools (1.2%) were invalid due to the lack of IC amplification, and then animals were confirmed negative individually. Our results suggest that implementation of herd screening by pooled RL-PCR would advance the monitoring and control of JD in cattle herds.
Collapse
|
6
|
Thirumalapura NR, Feria W, Tewari D. Comparison of three DNA extraction methods for molecular confirmation of Mycobacterium avium subspecies paratuberculosis from the VersaTrek™ liquid cultures of bovine fecal samples. J Microbiol Methods 2018; 152:27-30. [PMID: 30031737 DOI: 10.1016/j.mimet.2018.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
We evaluated three DNA extraction methods for confirmation of Mycobacterium avium subspecies paratuberculosis from liquid cultures of bovine feces. Use of DNA Extract All Reagents Kit™ resulted in efficient extraction of amplifiable DNA from higher proportion (96.29%) of known positive samples compared to Chelex-100 resin (25.92%) and polyethylene glycol (0%).
Collapse
Affiliation(s)
- Nagaraja R Thirumalapura
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, United States.
| | - Willard Feria
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, United States
| | - Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, United States.
| |
Collapse
|
7
|
Komatsu T, Inaba N, Kondo K, Nagata R, Kawaji S, Shibahara T. Systemic mycobacteriosis caused by 'Mycobacterium avium subspecies hominissuis' in a 14-month-old Japanese black beef steer. J Vet Med Sci 2017; 79:1384-1388. [PMID: 28690289 PMCID: PMC5573826 DOI: 10.1292/jvms.17-0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A 14-month-old Japanese black beef steer presented with severe chronic diarrhea and emaciation and was euthanized. Postmortem examination showed thickened and corrugated intestinal mucosa and enlarged granulomatous mesenteric lymph nodes with caseating necrosis. Numerous epithelioid cells and multinucleated giant cells infiltrated in the lamina propria and the submucosal tissue of the intestines. These cells were also observed in the systemic organs. Many acid-fast bacilli were detected in the cytoplasm of these cells and were identified as 'Mycobacterium avium subsp. hominissuis' (Mah) on the basis of the results of molecular examinations and immunohistochemistry. These findings indicate that Mah can cause systemic mycobacteriosis, and this unique infection needs to be distinguished from Johne's disease and tuberculosis in cattle.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Nanami Inaba
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Keiko Kondo
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Reiko Nagata
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Satoko Kawaji
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Tomoyuki Shibahara
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
8
|
Acharya KR, Dhand NK, Whittington RJ, Plain KM. PCR Inhibition of a Quantitative PCR for Detection of Mycobacterium avium Subspecies Paratuberculosis DNA in Feces: Diagnostic Implications and Potential Solutions. Front Microbiol 2017; 8:115. [PMID: 28210245 PMCID: PMC5288348 DOI: 10.3389/fmicb.2017.00115] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/17/2017] [Indexed: 01/05/2023] Open
Abstract
Molecular tests such as polymerase chain reaction (PCR) are increasingly being applied for the diagnosis of Johne's disease, a chronic intestinal infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Feces, as the primary test sample, presents challenges in terms of effective DNA isolation, with potential for PCR inhibition and ultimately for reduced analytical and diagnostic sensitivity. However, limited evidence is available regarding the magnitude and diagnostic implications of PCR inhibition for the detection of MAP in feces. This study aimed to investigate the presence and diagnostic implications of PCR inhibition in a quantitative PCR assay for MAP (High-throughput Johne's test) to investigate the characteristics of samples prone to inhibition and to identify measures that can be taken to overcome this. In a study of fecal samples derived from a high prevalence, endemically infected cattle herd, 19.94% of fecal DNA extracts showed some evidence of inhibition. Relief of inhibition by a five-fold dilution of the DNA extract led to an average increase in quantification of DNA by 3.3-fold that consequently increased test sensitivity of the qPCR from 55 to 80% compared to fecal culture. DNA extracts with higher DNA and protein content had 19.33 and 10.94 times higher odds of showing inhibition, respectively. The results suggest that the current test protocol is sensitive for herd level diagnosis of Johne's disease but that test sensitivity and individual level diagnosis could be enhanced by relief of PCR inhibition, achieved by five-fold dilution of the DNA extract. Furthermore, qualitative and quantitative parameters derived from absorbance measures of DNA extracts could be useful for prediction of inhibitory fecal samples.
Collapse
Affiliation(s)
- Kamal R. Acharya
- Sydney School of Veterinary Science, Faculty of Science, University of SydneyCamden, NSW, Australia
- Department of Livestock Services, Regional Veterinary Diagnostic LaboratoryDhangadhi, Nepal
| | - Navneet K. Dhand
- Sydney School of Veterinary Science, Faculty of Science, University of SydneyCamden, NSW, Australia
| | - Richard J. Whittington
- Sydney School of Veterinary Science, School of Life and Environmental Sciences, University of SydneyCamden, NSW, Australia
| | - Karren M. Plain
- Sydney School of Veterinary Science, Faculty of Science, University of SydneyCamden, NSW, Australia
| |
Collapse
|
9
|
Bovine Immunoinhibitory Receptors Contribute to Suppression of Mycobacterium avium subsp. paratuberculosis-Specific T-Cell Responses. Infect Immun 2015; 84:77-89. [PMID: 26483406 DOI: 10.1128/iai.01014-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/10/2015] [Indexed: 01/09/2023] Open
Abstract
Johne's disease (paratuberculosis) is a chronic enteritis in cattle that is caused by intracellular infection with Mycobacterium avium subsp. paratuberculosis. This infection is characterized by the functional exhaustion of T-cell responses to M. avium subsp. paratuberculosis antigens during late subclinical and clinical stages, presumably facilitating the persistence of this bacterium and the formation of clinical lesions. However, the mechanisms underlying T-cell exhaustion in Johne's disease are poorly understood. Thus, we performed expression and functional analyses of the immunoinhibitory molecules programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) and lymphocyte activation gene 3 (LAG-3)/major histocompatibility complex class II (MHC-II) in M. avium subsp. paratuberculosis-infected cattle during the late subclinical stage. Flow cytometric analyses revealed the upregulation of PD-1 and LAG-3 in T cells in infected animals, which suffered progressive suppression of interferon gamma (IFN-γ) responses to the M. avium subsp. paratuberculosis antigen. In addition, PD-L1 and MHC-II were expressed on macrophages from infected animals, consistent with PD-1 and LAG-3 pathways contributing to the suppression of IFN-γ responses during the subclinical stages of M. avium subsp. paratuberculosis infection. Furthermore, dual blockade of PD-L1 and LAG-3 enhanced M. avium subsp. paratuberculosis-specific IFN-γ responses in blood from infected animals, and in vitro LAG-3 blockade enhanced IFN-γ production from M. avium subsp. paratuberculosis-specific CD4(+) and CD8(+) T cells. Taken together, the present data indicate that M. avium subsp. paratuberculosis-specific T-cell exhaustion is in part mediated by PD-1/PD-L1 and LAG-3/MHC-II interactions and that LAG-3 is a molecular target for the control of M. avium subsp. paratuberculosis-specific T-cell responses.
Collapse
|