1
|
László Z, Pankovics P, Urbán P, Herczeg R, Balka G, Igriczi B, Cságola A, Albert M, Tóth F, Reuter G, Boros Á. Multiple Co-Infecting Caliciviruses in Oral Fluid and Enteric Samples of Swine Detected by a Novel RT-qPCR Assay and a 3'RACE-PCR-NGS Method. Viruses 2025; 17:193. [PMID: 40006947 PMCID: PMC11860220 DOI: 10.3390/v17020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Caliciviruses including noro- and sapoviruses of family Caliciviridae are important enteric human and swine pathogens, while others, like valoviruses, are less known. In this study, we developed a detection and typing pipeline for the most prevalent swine enteric caliciviruses-sapovirus GIII (Sw-SaV), norovirus GII (Sw-NoV), and valovirus GI (Sw-VaV). The pipeline integrates triplex RT-qPCR, 3'RACE semi-nested PCR, and next-generation sequencing (NovaSeq, Illumina) techniques. A small-scale epidemiological investigation was conducted on archived enteric and, for the first time, on oral fluid/saliva samples of diarrheic and asymptomatic swine of varying ages from Hungary and Slovakia. In enteric samples, Sw-SaV was the most prevalent, detected in 26.26% of samples, primarily in diarrheic pigs with low Cq values, followed by Sw-NoV (2.53%) in nursery pigs. In oral fluid samples, Sw-NoV predominated (7.46%), followed by Sw-SaV (4.39%). Sw-VaVs were sporadically found in both sample types. A natural, asymptomatic Sw-SaV outbreak was retrospectively detected where the transient shedding of the virus was <2 weeks. Complete capsid sequences (n = 59; 43 Sw-SaV, 13 Sw-NoV, and 3 Sw-VaV) including multiple (up to five) co-infecting variants were identified. Sw-SaV sequences belong to seven genotypes, while Sw-NoV and Sw-VaV strains clustered into distinct sub-clades, highlighting the complex diversity of these enteric caliciviruses in swine.
Collapse
Affiliation(s)
- Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| | - Péter Urbán
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, János Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (P.U.); (R.H.)
| | - Róbert Herczeg
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, János Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (P.U.); (R.H.)
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, István Str 2., 1078 Budapest, Hungary; (G.B.); (B.I.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, 1078 Budapest, Hungary
| | - Barbara Igriczi
- Department of Pathology, University of Veterinary Medicine, István Str 2., 1078 Budapest, Hungary; (G.B.); (B.I.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, 1078 Budapest, Hungary
| | - Attila Cságola
- Ceva Phylaxia Ltd., 1107 Budapest, Hungary; (A.C.); (M.A.)
| | - Mihály Albert
- Ceva Phylaxia Ltd., 1107 Budapest, Hungary; (A.C.); (M.A.)
| | - Fruzsina Tóth
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (Z.L.); (P.P.); (F.T.); (G.R.)
| |
Collapse
|
2
|
Hinds J, Apaa T, Parry RH, Withers AJ, MacKenzie L, Staley C, Morrison J, Bennett M, Bremner-Harrison S, Chadwick EA, Hailer F, Harrison SW, Lambin X, Loose M, Mathews F, Tarlinton R, Blanchard A. Multiple novel caliciviruses identified from stoats (Mustela erminea) in the United Kingdom. Access Microbiol 2024; 6:000813.v4. [PMID: 39130737 PMCID: PMC11316584 DOI: 10.1099/acmi.0.000813.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
The Caliciviridae family, comprising positive-sense RNA viruses, is characterised by its non-enveloped, small virions, broad host range, and notable tendency for host switching. These viruses are primarily associated with gastroenteric disease, though they can lead to haemorrhagic or respiratory infections. Our study employed a metagenomics analysis of faecal samples from stoats (Mustela erminea), identifying two novel calicivirus species, named stoat vesivirus and stoat valovirus. Stoat vesivirus was identified in three samples (ST008, ST006, ST004), exhibiting a genome wide nucleotide identity of approximately 92 %. The complete coding sequences of these samples were 8471 (ST004) and 8322 (ST006) nucleotides in length, respectively. Each comprised three open reading frames (ORF), closely resembling the Vesivirus mink calicivirus (China/2/2016), with 70-72 % similarity in ORF1, 61-62 % in ORF2 and 71 % in ORF3. Phylogenetic analysis robustly supported stoat vesivirus as belonging within the Vesivirus genus. The second calivicirus (stoat valovirus), detected solely in sample ST008, was 6527 nucleotides in length and with complete coding sequences present. It shared highest similarity with St-Valérien swine virus and marmot norovirus HT16, showing 39.5 and 38.8 % protein identity with ORF1 and 43.3 and 42.9 % for VP1. Stoat valovirus is borderline for meeting the ICTV criteria for a new genus, demonstrating 60 % divergence in ORF1 compared to the other valovirus', however it clusters basally within the Valovirus genus, supporting leaving it included in this genus.
Collapse
Affiliation(s)
- Joseph Hinds
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Ternenge Apaa
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
- Animal and Plant Health Agency, Addlestone Surrey, UK
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Amy J. Withers
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
- Animal and Plant Health Agency, Addlestone Surrey, UK
| | - Laura MacKenzie
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ceri Staley
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Joshua Morrison
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Malcolm Bennett
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Samantha Bremner-Harrison
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
- Vincent Wildlife Trust, Eastnor, Ledbury, UK
| | | | - Frank Hailer
- Organisms and Environment, School of Biosciences, Cardiff University, Cardiff, UK
- Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Beijing, PR China
| | - Stephen W.R. Harrison
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
- School of Veterinary Medicine, University of Central Lancashire, Preston, UK
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Mathew Loose
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Fiona Mathews
- School of Life sciences, University of Sussex, Falmer, UK
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Adam Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
3
|
Kemenesi G, Gellért Á, Dallos B, Görföl T, Boldogh S, Estók P, Marton S, Oldal M, Martella V, Bányai K, Jakab F. Sequencing and molecular modeling identifies candidate members of Caliciviridae family in bats. INFECTION GENETICS AND EVOLUTION 2016; 41:227-232. [PMID: 27085289 PMCID: PMC7172268 DOI: 10.1016/j.meegid.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
Emerging viral diseases represent an ongoing challenge for globalized world and bats constitute an immense, partially explored, reservoir of potentially zoonotic viruses. Caliciviruses are important human and animal pathogens and, as observed for human noroviruses, they may impact on human health on a global scale. By screening fecal samples of bats in Hungary, calicivirus RNA was identified in the samples of Myotis daubentonii and Eptesicus serotinus bats. In order to characterize more in detail the bat caliciviruses, large portions of the genome sequence of the viruses were determined. Phylogenetic analyses and molecular modeling identified firmly the two viruses as candidate members within the Caliciviridae family, with one calicivirus strain resembling members of the Sapovirus genus and the other bat calicivirus being more related to porcine caliciviruses of the proposed genus Valovirus. This data serves the effort for detecting reservoir hosts for potential emerging viruses and recognize important evolutionary relationships. Two novel bat caliciviruses were genetically characterized. Mature viral capsids were molecularly modeled. Bat caliciviruses are highly heterogeneous genetically. The two novel viruses are genetically related to valoviruses and sapoviruses. New sequences were most closely related to Chinese sequences.
Collapse
Affiliation(s)
- Gábor Kemenesi
- Virological Research Group, János Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ákos Gellért
- Department of Applied Genomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Bianka Dallos
- Virological Research Group, János Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Tamás Görföl
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary; Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Péter Estók
- Department of Zoology, Eszterházy Károly College, Eger, Hungary
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miklós Oldal
- Virological Research Group, János Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Vito Martella
- Dipartimento di Medicina Veterinaria, Universitá Aldo Moro di Bari, Valenzano, Italy
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Jakab
- Virological Research Group, János Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| |
Collapse
|