1
|
Kanipe C, Putz EJ, Palmer MV. Differential expression of vascular endothelial growth factor A (VEGFA) and M1 macrophage marker nitric oxide synthase 2 (NOS2) in lymph node granulomas of BCG-vaccinated and non-vaccinated cattle infected with Mycobacterium bovis. Tuberculosis (Edinb) 2025; 151:102609. [PMID: 39862443 DOI: 10.1016/j.tube.2025.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Bovine tuberculosis is mainly caused by Mycobacterium bovis. Bacillus Calmette-Guérin (BCG) is an attenuated strain of M. bovis which provides variable disease protection. Lesions have been characterized in infected cattle, but little comparison has been done with lesions which form in BCG-vaccinates. Here, in situ hybridization examined differences in expression of M. bovis RNA, inducible nitric oxide synthase 2, and vascular endothelial growth factor A in relation to vaccination status and granuloma grade, using two different groups of cattle. Data found no differences between vaccination groups or granuloma grade in average copies of M. bovis mRNA per μm2 of total granuloma area or per μm2 of necrotic areas. Within a vaccination group high-grade granulomas had more NOS2 per cell, per μm2 and a higher percentage of cells expressing NOS2 than low-grade granulomas. Non-vaccinates had a higher percentage of cells producing NOS2 than vaccinates. Differences in NOS2 expression varied by group. Vaccination status and granuloma grade did not affect the average copies of VEGFA per cell or the percent of cells expressing RNA, however VEGFA copies per μm2 varied between groups. These findings suggest NOS2 and VEGFA are likely not mechanisms of BCG vaccination protection but may impact disease severity.
Collapse
Affiliation(s)
- C Kanipe
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA; Immunobiology Program, Iowa State University, Ames, IA, 50010, USA.
| | - E J Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - M V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| |
Collapse
|
2
|
Beishova IS, Belaya AV, Yuldashbayev YA, Chuzhebayeva GD, Ulyanov VA, Ulyanova TV, Kovalchuk AM, Kuzhebayeva UZ, Namet AM. Genetic polymorphism of prolactin and nitric oxide synthase in Holstein cattle. Vet World 2023; 16:161-167. [PMID: 36855359 PMCID: PMC9967724 DOI: 10.14202/vetworld.2023.161-167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/15/2022] [Indexed: 01/28/2023] Open
Abstract
Background and Aim Bacterial and viral infections affect the welfare of animals and lead to large economic losses in dairy cattle breeding due to decreased productive indicators and increased culling rates. In modern dairy farming, farmers are looking for effective solutions to prevent and minimize infectious disease risks. To this end, the most relevant study field is the search for gene sites that impact production and health. This study aimed to determine the nature of the distribution of the relative frequencies of alleles and genotypes of polymorphic prolactin (PRL) and nitric oxide synthase (NOS2) in Holstein cows and identify the relationship of these genes with resistance to mastitis and bovine leukemia. Materials and Methods For this study, we chose cows because infectious diseases affect the amount of lactation and milk quality. Holstein cattle with mastitis and bovine leukemia were selected. Animal genotypes were determined by restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products. The results were analyzed using a nonparametric statistical method using Microsoft Excel 2010 and Statistica 6.0. Results In healthy animals, 94 genotypes were identified for both genes under study. For bPRL, bPRL-RsaIAA (72) was the most common genotype and bPRL-RsaIBB (4) the least; for NOS2, bNOS2 -HinfIAB (47) was the most common genotype and bNOS2 -HinfIAA the least (21). In animals with leukemia, 34 genotypes were identified. For PRL, bPRL-RsaIAA (25) was the most common genotype and bPRL-RsaIBB (2) the least; for NOS2, bNOS2 -HinfIBB (17) was the most common genotype and bNOS2 -HinfIAA (3) the least. In animals with mastitis, 67 genotypes were identified. For PRL, bPRL-RsaIAA (43) was the most common genotype and bPRL-RsaIBB (6) the least; for NOS2, bNOS2 -HinfIBB (31) was the most common genotype and bNOS2-HinfIAA (7) the least. The distribution of genotypes of polymorphic bPRL and bNOS2 generally coincides, and bPRL-RsaIBB is the most common genotype. In groups of sick animals, the number of bNOS2 -HinfIAA homozygotes was lower than that of the control group. In particular, the proportion of animals with the bNOS2 -HinfIAA genotype with bovine leukemia was 8.7% and with mastitis was 10.3% compared with 22.4% in healthy animals. These data support the possible association of the bNOS2 -HinfIAA genotype with resistance to infection. The frequency of the bPRL-RsaIB allele was higher in groups of sick animals. This allele is associated with increased milk productivity, suggesting that highly productive animals are less resistant to the incidence of viral bovine leukemia and mastitis of bacterial etiology. Conclusion DNA amplification of Holstein cattle for the polymorphic regions of PRL and NOS2 using the PCR-RFLP method revealed a possible connection between the distribution of relative allele frequencies of bPRL and bNOS2 and resistance to viral and bacterial infections. Thus, in groups of sick animals, the frequency of bPRL-RsaIBB, associated with increased milk production compared with the theoretically calculated equilibrium value was higher and the number of homozygotes bNOS2 -HinfIAA was lower than in the control group. In conclusion, animals with increased milk production were more prone to diseases, such as mastitis and bovine leukemia.
Collapse
Affiliation(s)
- Indira Saltanovna Beishova
- Non-profit JSC “Zhangir Khan West Kazakhstan Agrarian Technical University”, Uralsk, Republic of Kazakhstan
| | | | | | | | | | | | | | - Ulbolsyn Zhangaziyevna Kuzhebayeva
- Non-profit JSC “Zhangir Khan West Kazakhstan Agrarian Technical University”, Uralsk, Republic of Kazakhstan,Corresponding author: Ulbolsyn Zhangaziyevna Kuzhebayeva, e-mail: Co-authors: ISB: , AVB: , YAY: , GDC: , VAU: , TVU: , AMK: , AMN:
| | | |
Collapse
|
3
|
Utomo B, Rimayanti R, Triana IN, Fadholly A. Melanocortin-4 receptor and leptin as genes for the selection of superior Madrasin cattle. Vet World 2021; 14:3224-3228. [PMID: 35153416 PMCID: PMC8829405 DOI: 10.14202/vetworld.2021.3224-3228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
Background and Aim: The genetic improvement of cattle through livestock section is based on quantitative, qualitative, and molecular characteristics. This study examined polymorphisms of the melanocortin-4 receptor (MC4R) and leptin genes as a reference for the selection of superior breeds in Madrasin cattle. Materials and Methods: The leptin and MC4R genes of Madrasin cattle were amplified using polymerase chain reaction (PCR); then, restriction fragment length polymorphism of the leptin gene was performed using the restriction enzyme BsaA1, at site 2793 with ACGT point position. Results: The leptin gene was divided into three bands, namely, AA with one fragment (522 bp), CG with two fragments (441 bp and 81 bp), and AG with three fragments (522 bp, 441 bp, and 81 bp). The MCR-4 gene was divided into three bands, namely, 493 bp, 318 bp, and 175 bp. Conclusion: The MC4R and leptin genes can act as molecular markers for growth traits in Madrasin cattle and can be used to genetically optimize and improve growth. The GG allele of the MC4R gene and the AA allele of the leptin gene can be used in Madrasin cattle.
Collapse
Affiliation(s)
- Budi Utomo
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Indah Norma Triana
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Amaq Fadholly
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| |
Collapse
|
4
|
Abdissa K, Ruangkiattikul N, Ahrend W, Nerlich A, Beineke A, Laarmann K, Janze N, Lobermeyer U, Suwandi A, Falk C, Schleicher U, Weiss S, Bogdan C, Goethe R. Relevance of inducible nitric oxide synthase for immune control of Mycobacterium avium subspecies paratuberculosis infection in mice. Virulence 2021; 11:465-481. [PMID: 32408806 PMCID: PMC7239028 DOI: 10.1080/21505594.2020.1763055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne’s disease (JD), an incurable chronic intestinal bowel disease in ruminants. JD occurs worldwide and causes enormous economic burden in dairy industry. Research on JD pathobiology is hampered by its complexity which cannot completely be mimicked by small animal models. As a model the mouse allows dissecting some pathogenicity features of MAP. However, for unknown reasons MAP exhibits reduced growth in granulomas of infected mice compared to other Mycobacterium avium subspecies. Here, we characterized immune reactions of MAP-infected C57BL/6 mice. After infection, mice appeared fully immunocompetent. A strong antigen-specific T cell response was elicited indicated by IFNγ production of splenic T cells re-stimulated with MAP antigens. Function of splenic dendritic cells and proliferation of adoptively transferred antigen-specific CD4+ T cells was unaltered. Isolated splenic myeloid cells from infected mice revealed that MAP resides in CD11b+ macrophages. Importantly, sorted CD11b+CD11c− cells expressed high level of type 2 nitric oxide synthase (NOS2) but only low levels of pro- and anti-inflammatory cytokines. Correspondingly, MAP-infected MAC2 expressing myeloid cells in spleen and liver granuloma displayed strong expression of NOS2. In livers of infected Nos2−/−mice higher bacterial loads, more granuloma and larger areas of tissue damage were observed 5 weeks post infection compared to wild type mice. In vitro, MAP was sensitive to NO released by a NO-donor. Thus, a strong T cell response and concomitant NOS2/NO activity appears to control MAP infection, but allows development of chronicity and pathogen persistence. A similar mechanism might explain persistence of MAP in ruminants.
Collapse
Affiliation(s)
- Ketema Abdissa
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Wiebke Ahrend
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Nerlich
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Beineke
- Institute for Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kristin Laarmann
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nina Janze
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ulrike Lobermeyer
- Mouse Pathology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Abdulhadi Suwandi
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie Und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie Und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Utomo B, Putranto ED, Fadholly A. Profile of follicle-stimulating hormone and polymorphism of follicle-stimulating hormone receptor in Madrasin cattle with ovarian hypofunction. Vet World 2020; 13:879-883. [PMID: 32636582 PMCID: PMC7311873 DOI: 10.14202/vetworld.2020.879-883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim The follicle-stimulating hormone (FSH) gene is an essential regulator of fertility in livestock. This study aims to provide information on the genetic makeup of Madrasin cattle experiencing hypofunction by the FSH profile and FSH receptors (FSHR) polymorphism. Materials and Methods Blood samples were collected from the Bangkalan regency in Indonesia. DNA was isolated and purified following the extraction protocol of polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism. Results Our results showed that the FSH gene had a band length of 310 bp and produce two alleles (A and B) with restriction enzymes at 250 bp, 230 bp, and 145 bp. Furthermore, the FSHR gene had a band length of 303 bp and produced two homozygous genotypes: GG at bp 239 and CC at bp 188. Conclusion Based on these differences, there was no change in allele frequency and genotype between Madura and Madrasin cattle due to crossbreeding with Limousin cattle. Thus, further detailed investigations of Madrasin cattle are required to elucidate the profile of the LH and LHR genes.
Collapse
Affiliation(s)
- Budi Utomo
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Emmanuel Djoko Putranto
- Department of Veterinary Clinical, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Amaq Fadholly
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
6
|
Exploring the association between polymorphisms at 3’UTR SLC11A1 gene microsatellites and resistance to tuberculosis: A case-control study in Bos taurus dairy cattle. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Malone KM, Rue-Albrecht K, Magee DA, Conlon K, Schubert OT, Nalpas NC, Browne JA, Smyth A, Gormley E, Aebersold R, MacHugh DE, Gordon SV. Comparative 'omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli. Microb Genom 2018; 4:e000163. [PMID: 29557774 PMCID: PMC5885015 DOI: 10.1099/mgen.0.000163] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/26/2018] [Indexed: 01/30/2023] Open
Abstract
Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection.
Collapse
Affiliation(s)
- Kerri M. Malone
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Present address: European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kévin Rue-Albrecht
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- Present address: Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7FY, UK
| | - David A. Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin Conlon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Olga T. Schubert
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
- Present address: Department of Human Genetics, University of California, Los Angeles, USA
| | - Nicolas C. Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- Present address: Quantitative Proteomics and Proteome Centre Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - John A. Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alicia Smyth
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | - David E. MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- UCD School of Medicine, University College Dublin, Dublin 4, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
8
|
Bilham K, Boyd AC, Preston SG, Buesching CD, Newman C, Macdonald DW, Smith AL. Badger macrophages fail to produce nitric oxide, a key anti-mycobacterial effector molecule. Sci Rep 2017; 7:45470. [PMID: 28382943 PMCID: PMC5382539 DOI: 10.1038/srep45470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/01/2017] [Indexed: 12/27/2022] Open
Abstract
The European badger is recognised as a wildlife reservoir for bovine tuberculosis (bTB); the control of which is complex, costly and controversial. Despite the importance of badgers in bTB and the well-documented role for macrophages as anti-mycobacterial effector cells, badger macrophage (bdMφ) responses remain uncharacterised. Here, we demonstrate that bdMφ fail to produce nitric oxide (NO) or upregulate inducible nitric oxide synthase (iNOS) mRNA following Toll-like receptor (TLR) agonist treatment. BdMφ also failed to make NO after stimulation with recombinant badger interferon gamma (bdIFNγ) or a combination of bdIFNγ and lipopolysaccharide. Exposure of bdMφ to TLR agonists and/or bdIFNγ resulted in upregulated cytokine (IL1β, IL6, IL12 and TNFα) mRNA levels indicating that these critical pathways were otherwise intact. Although stimulation with most TLR agonists resulted in strong cytokine mRNA responses, weaker responses were evident after exposure to TLR9 agonists, potentially due to very low expression of TLR9 in bdMφ. Both NO and TLR9 are important elements of innate immunity to mycobacteria, and these features of bdMφ biology would impair their capacity to resist bTB infection. These findings have significant implications for the development of bTB management strategies, and support the use of vaccination to reduce bTB infection in badgers.
Collapse
Affiliation(s)
- Kirstin Bilham
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, United Kingdom.,Wildlife Conservation Research Unit Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL, United Kingdom
| | - Amy C Boyd
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, United Kingdom
| | - Stephen G Preston
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, United Kingdom
| | - Christina D Buesching
- Wildlife Conservation Research Unit Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL, United Kingdom
| | - Chris Newman
- Wildlife Conservation Research Unit Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL, United Kingdom
| | - David W Macdonald
- Wildlife Conservation Research Unit Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL, United Kingdom
| | - Adrian L Smith
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, United Kingdom
| |
Collapse
|
9
|
Prajapati BM, Gupta JP, Pandey DP, Parmar GA, Chaudhari JD. Molecular markers for resistance against infectious diseases of economic importance. Vet World 2017; 10:112-120. [PMID: 28246455 PMCID: PMC5301170 DOI: 10.14202/vetworld.2017.112-120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/31/2016] [Indexed: 12/22/2022] Open
Abstract
Huge livestock population of India is under threat by a large number of endemic infectious (bacterial, viral, and parasitic) diseases. These diseases are associated with high rates of morbidity and mortality, particularly in exotic and crossbred cattle. Beside morbidity and mortality, economic losses by these diseases occur through reduced fertility, production losses, etc. Some of the major infectious diseases which have great economic impact on Indian dairy industries are tuberculosis (TB), Johne's disease (JD), mastitis, tick and tick-borne diseases (TTBDs), foot and mouth disease, etc. The development of effective strategies for the assessment and control of infectious diseases requires a better understanding of pathogen biology, host immune response, and diseases pathogenesis as well as the identification of the associated biomarkers. Indigenous cattle (Bos indicus) are reported to be comparatively less affected than exotic and crossbred cattle. However, genetic basis of resistance in indigenous cattle is not well documented. The association studies of few of the genes associated with various diseases, namely, solute carrier family 11 member 1, Toll-like receptors 1, with TB; Caspase associated recruitment domain 15, SP110 with JD; CACNA2D1, CD14 with mastitis and interferon gamma, BoLA--DRB3.2 alleles with TTBDs, etc., are presented. Breeding for genetic resistance is one of the promising ways to control the infectious diseases. High host resistance is the most important method for controlling such diseases, but till today no breed is total immune. Therefore, work may be undertaken under the hypothesis that the different susceptibility to these diseases are exhibited by indigenous and crossbred cattle is due to breed-specific differences in the dealing of infected cells with other immune cells, which ultimately influence the immune response responded against infections. Achieving maximum resistance to these diseases is the ultimate goal, is technically possible to achieve, and is permanent. Progress could be enhanced through introgression of resistance genes to breeds with low resistance. The quest for knowledge of the genetic basis for infectious diseases in indigenous livestock is strongly warranted.
Collapse
Affiliation(s)
- B. M. Prajapati
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - J. P. Gupta
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - D. P. Pandey
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - G. A. Parmar
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - J. D. Chaudhari
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| |
Collapse
|