1
|
Laopiem S, Witoonsatian K, Kulprasetsri S, Panomwan P, Pathomchai-Umporn C, Kamtae R, Jirawattanapong P, Songserm T, Sinwat N. Antimicrobial resistance, virulence gene profiles, and phylogenetic groups of Escherichia coli isolated from healthy broilers and broilers with colibacillosis in Thailand. BMC Vet Res 2025; 21:160. [PMID: 40057792 PMCID: PMC11889816 DOI: 10.1186/s12917-025-04626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Multidrug resistance in Escherichia coli has a significant global impact on poultry production. This study aimed to determine the phenotypic and genotypic backgrounds of antimicrobial resistance (AMR) and virulence gene profiles of E. coli strains isolated from diseased and healthy broilers. A total of 211 E. coli isolates were recovered from diseased (n = 110) and healthy broilers (n = 101). All the isolates were subjected to antimicrobial susceptibility testing. A PCR-based technique was applied to screen AMR genes, virulence genes and analyze phylogenetic groups. RESULTS Phylogenetic groups B1 and D were the most prevalent for E. coli isolated from diseased and healthy birds. Among virulence genes, the detection rates of cva/cvi, iutA, iucD, iroN, iss and ompT were considerably greater in E.coli strains from diseased birds than in healthy birds. The virulence gene pattern of hlyF-iutA-iucD-iroN-iss-ompT (16.4%) was frequently observed in E.coli isolated from diseased birds, whereas approximately 22.8% of E.coli from healthy birds did not carry any virulence genes. Analysis of AMR profiles revealed that 58.3% of E.coli were resistant to multiple classes of antibiotics, and 96.7% carried at least one antibiotic resistance gene AMR genes. CONCLUSION The findings of this study demonstrate the variable distribution of phylogenetic groups and virulence genes. E.coli strains isolated from broilers had multidrug resistance profiles. The study emphasizes the need for continuous monitoring of AMR emergence in E. coli from broilers. This monitoring allows for early detection and implementation of strategies to control the spread of resistant strains.
Collapse
Affiliation(s)
- Sudtisa Laopiem
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Kriangkrai Witoonsatian
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Sittinee Kulprasetsri
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Pun Panomwan
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Chutima Pathomchai-Umporn
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Raktipon Kamtae
- Kamphaeng Saen Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean campus, Nakorn Pathom, 73140, Thailand
| | - Pichai Jirawattanapong
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Thaweesak Songserm
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean campus, Nakorn Pathom, 73140, Thailand
| | - Nuananong Sinwat
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand.
| |
Collapse
|
2
|
Jamali H, Akrami F, Bouakkaz S, Dozois CM. Prevalence of specific serogroups, antibiotic resistance and virulence factors of avian pathogenic Escherichia coli (APEC) isolated from clinical cases: A systematic review and meta-analysis. Microb Pathog 2024; 194:106843. [PMID: 39117015 DOI: 10.1016/j.micpath.2024.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Pathogenic strains of Escherichia coli infecting poultry, commonly called avian pathogenic E. coli (APEC) present significant risks, to the health of both poultry and the general public. This systematic review aimed to examine the prevalence of APEC serotypes, sequence types (ST), phylogenetic groups, virulence factors and antibiotic resistance patterns based on 189 research papers sourced from PubMed, Web of Science, and ProQuest. Then, data were extracted from the selected studies and analyzed to assess the global distribution and characteristics of APEC strains. The metaprop codes in the Meta and Metafor packages of R as implemented in RStudio were then used to conduct meta-analysis. Among APEC strains identified from these different research reports serogroup O78 had the highest overall prevalence (16 %), followed by serogroups O2 (10 %), and O117 (8 %). The most common ST profiles were ST117 (20 %), ST140 (15 %), ST95 (12 %), and ST131 (9 %). ST117 and ST140 are known reservoirs for pathogenic E. coli in humans. Moreover, phylogenetic assessment highlighted the prevalence of phylogroups A, A1, F, D, and B2 among APEC strains indicating diversity in phylogenetic origin within poultry populations. The presence of antimicrobial resistance was notable among APEC strains against antibiotics such as tetracyclines, penicillins, and cephalosporins. This resistance may be linked to use of antimicrobials in poultry production in certain regions presenting challenges for both animal health management and human infection control. Analysis of sequences linked to adherence or virulence indicated that genes encoding adhesins (csg, fimC), iron/metal uptake (sitB, sitC, iroD) and cytotoxicity (estB, hlyF), and serum resistance (traT, iss) were highly prevalent. These factors have been reported to contribute to APEC host colonization and virulence in poultry. In summary, this overview of the characteristics of APEC highlights the pressing importance of monitoring and implementing management approaches to reduce antimicrobial resistance considering that a phylogenetic diversity of E. coli strains causes infections in both poultry and humans and represents a risk to both animal and public health. Further, determining the major conserved aspects and predominant mechanisms of virulence of APEC is critical for improving diagnostics and developing preventative measures to reduce the burden of infection caused by pathogenic E. coli in poultry and lower risks associated with foodborne transmission of E. coli to humans through poultry and poultry products.
Collapse
Affiliation(s)
- Hossein Jamali
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Fariba Akrami
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Souhaib Bouakkaz
- École de Technologie Supérieure, 1100 R. Notre Dame Ouest, Montréal, QC H3C 1K3, Canada
| | - Charles M Dozois
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
3
|
Plasmid-mediated quinolone resistance determinants in fluoroquinolone-nonsusceptible Escherichia coli isolated from patients with urinary tract infections in a university hospital, 2009-2010 and 2020: PMQR in UTI E. coli. J Glob Antimicrob Resist 2022; 30:241-248. [PMID: 35691573 DOI: 10.1016/j.jgar.2022.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study aimed to characterize the plasmid-mediated quinolone resistance (PMQR) in fluoroquinolone non-susceptible E. coli (FQNSEC) isolated from patients with urinary tract infections (UTIs) in 2019-2010 and 2020. METHODS A total of 844 E. coli isolates were collected from UTI patients at National Cheng Kung University Hospital (NCKUH). The antimicrobial susceptibility of E. coli isolates to 21 antibiotics was determined by disk diffusion tests. The distribution of phylogenetic groups, virulence factor, and PMQR genes, was determined by PCR. Conjugation assays were performed to investigate the transferrability of qnr genes from FQNSEC isolates to E. coli C600. RESULTS We found 211 (41.9%) and 152 (44.7%) E. coli isolates were FQNSEC in 2009-2010 and 2020, respectively. Phylogenetic group B2 was dominant in FQNSEC isolates (52.34%), followed by group F (10.47%), group B1 (9.64%), and group D (9.64%). FQNSEC isolates were more resistant to 17 of 19 tested antimicrobial agents, compared to the FQ susceptible E. coli. PMQR screening results showed that 34, 22, and 10 FQNSEC isolates containing aac(6')-Ib-cr, qnr genes, and efflux pump genes (qepA or oqxAB), respectively. PMQR E. coli isolates were more non-susceptible to gentamicin, amoxicillin, ampicillin/sulbactam, imipenem, cefazolin, cefuroxime, cefmetazole, ceftriaxone, ceftazidime, and cefepime, compared to non-PMQR FQNSEC. Moreover, 16 of 22 qnr-carrying plasmids were transferrable to the recipient C600. CONCLUSION Here, we reported the high prevalence of MDR- and XDR-E. coli in FQNSEC isolates. Moreover, qnr-carrying plasmids were highly transferable and lead to the resistance to other classes of antibiotics in the transconjugants.
Collapse
|
4
|
High Genetic Diversity and Antimicrobial Resistance in Escherichia coli Highlight Arapaima gigas (Pisces: Arapaimidae) as a Reservoir of Quinolone-Resistant Strains in Brazilian Amazon Rivers. Microorganisms 2022; 10:microorganisms10040808. [PMID: 35456858 PMCID: PMC9030826 DOI: 10.3390/microorganisms10040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing prevalence of multi-drug resistant (MDR) Escherichia coli in distinct ecological niches, comprising water sources and food-producing animals, such as fish species, has been widely reported. In the present study, quinolone-resistant E. coli isolates from Arapirama gigas, a major fish species in the Brazilian Amazon rivers and fish farms, were characterized regarding their antimicrobial susceptibility, virulence, and genetic diversity. A total of forty (40) specimens of A. gigas, including 20 farmed and 20 wild fish, were included. Thirty-four quinolone-resistant E. coli isolates were phenotypically tested by broth microdilution, while resistance and virulence genes were detected by PCR. Molecular epidemiology and genetic relatedness were analyzed by MLST and PFGE typing. The majority of isolates were classified as MDR and detected harboring blaCTX-M, qnrA and qnrB genes. Enterotoxigenic E. coli pathotype (ETEC) isolates were presented in low prevalence among farmed animals. MLST and PFGE genotyping revealed a wide genetic background, including the detection of internationally spread clones. The obtained data point out A. gigas as a reservoir in Brazilian Amazon aquatic ecosystems and warns of the interference of AMR strains in wildlife and environmental matrices.
Collapse
|
5
|
Patil SS, Shinduja R, Suresh KP, Phukan S, Kumar S, Sengupta PP, G. Amachawadi R, Raut A, Roy P, Syed A, Marraiki N, Elgorban AM, Al-Harthi HF, Bahkali AH, Shivamallu C, Shiva Prasad K. A systematic review and meta-analysis on the prevalence of infectious diseases of Duck: A world perspective. Saudi J Biol Sci 2021; 28:5131-5144. [PMID: 34466091 PMCID: PMC8381006 DOI: 10.1016/j.sjbs.2021.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022] Open
Abstract
The Indian poultry industry is one of the fast-growing sectors of which duck farming plays an important role. Duck population in India is 33.51 million that is concentrated towards north-east and southern parts of the country who rears mainly for eggs and meat. Duck diseases are of great concern as they badly affect the financial status of the small, landless farmers. Databases such as Google Scholar, PubMed, J gate were used to search articles between 2000 and 2019 that showed the prevalence of viral, bacterial, and parasitic duck diseases. R open source software was used to derive forest plots by statistical analysis. Pooled prevalence estimates of duck diseases worldwide was found to be 20% (95%-CI:15-26). Also, continent-wise analysis of all duck diseases has revealed highest prevalence in North America, followed by Asia, Africa, Europe,Oceania and South America. This prevalence of data would be helpful to the policymakers to develop appropriate intervention strategies to prevent and control diseases in their respective locations.
Collapse
Affiliation(s)
- Sharanagouda S. Patil
- ICAR-National Institute of Veterinary Epidem iology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, India
| | - Rajamani Shinduja
- ICAR-National Institute of Veterinary Epidem iology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, India
| | | | - Sulekha Phukan
- Department of Parasitology, College of Veterinary Science, Khanapara, Guwahati, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, IIT, Guwahati, Assam, India
| | - Pinaki Prasad Sengupta
- ICAR-National Institute of Veterinary Epidem iology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, India
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ashwin Raut
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Bhopal, Madhya Pradesh, India
| | - Parimal Roy
- ICAR-National Institute of Veterinary Epidem iology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Helal F. Al-Harthi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka 570 015, India
| | - Kollur Shiva Prasad
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka 570 026, India
| |
Collapse
|
6
|
Moreno-Pérez PA, Hernández-Téllez M, Bautista-Gálvez A. In Danger One of the Largest Aquifers in the World, the Great Mayan Aquifer, Based on Monitoring the Cenotes of the Yucatan Peninsula. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:189-198. [PMID: 34250569 DOI: 10.1007/s00244-021-00869-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The aquifer flowing beneath the Yucatan Peninsula, México, is one of the largest in the world and is in direct contact with the surface through "cenotes" (sinkholes) that have been documented to be contaminated with various classes of pollutants. The objective of this study was to evaluate the environmental status of the Great Mayan Aquifer through a review of data published on pollution of the cenotes. Approximately 1000 known georeferenced cenotes on the Yucatan Peninsula were geographically located. A map was generated using the geographic information system software. High-resolution satellite images were processed to complement the "QuickMap Services" and the formatting service of the Environmental Systems Research Institute. From the literature, 173 cenotes were identified as being sampled for various pollutants, and of these, one or more classes of pollutants were detected in 160 (i.e., greater than 92%) of the cenotes. Pollutants reported to be present included bacteria and viruses of human origin, fecal sterols, polycyclic aromatic hydrocarbons (PAHs), pesticides, pharmaceuticals, illicit drugs and personal care products. From the review of the literature, only 13 cenotes were reported to be free of the target pollutants. From this study, it can be concluded that the aquifer system with the Yucatan Peninsula is vulnerable to contamination from pollutants originating from wastewater, as well as surface runoff and infiltration from urban and agricultural lands.
Collapse
Affiliation(s)
- Pablo Antonio Moreno-Pérez
- Laboratory of Medical and Environmental Microbiology, Faculty of Medicine, Autonomous University of the State of Mexico, Av. Paseo Tollocan, Calle Jesús Carranza, Moderna de La Cruz, 50180, Toluca de Lerdo, Mexico.
| | - Marivel Hernández-Téllez
- Inter-American Institute of Technology and Water Sciences, Autonomous University of the State of Mexico, 10 Toluca. Carretera Toluca-Ixtlahuaca km. 14.5 San Cayetano Morelos, CP. 50120, Toluca, Mexico
| | - Arely Bautista-Gálvez
- Mayan Faculty of Agricultural Studies of the Autonomous University of Chiapas, Carretera Catazaja-Palenque 14 Km 4, CP. 29960, Catazaja, Chiapas, Mexico
| |
Collapse
|
7
|
Yoon MY, Kim YB, Ha JS, Seo KW, Noh EB, Son SH, Lee YJ. Molecular characteristics of fluoroquinolone-resistant avian pathogenic Escherichia coli isolated from broiler chickens. Poult Sci 2020; 99:3628-3636. [PMID: 32616259 PMCID: PMC7597827 DOI: 10.1016/j.psj.2020.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/13/2020] [Accepted: 03/21/2020] [Indexed: 11/30/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major pathogen in the poultry industry worldwide including Korea. In this study, the phenotypic and genotypic characteristics of 33 fluoroquinolone (FQ)-resistant APEC isolates from broilers were analyzed. All FQ-resistant APEC isolates showed amino acid exchanges at both gyrA and parC and high minimal inhibitory concentrations for FQs. A total of 11 (33.3%) isolates were positive for the plasmid-mediated quinolone resistance (PMQR) genes, qnrA (8 isolates) and qnrS (3 isolates), and showed multidrug resistance. Among the 11 PMQR-positive isolates, 1 and 2 isolates carried blaCTX-1 and blaCTX-15, respectively, as extended-spectrum β-lactamase (ESBL) producers, and the non-ESBL gene, blaTEM-1, was found in 4 isolates. Among 3 aminoglycoside-resistant isolates, aac(3)-II was only detected in 1 isolate. All 8 APEC isolates with resistance to tetracycline carried the tetA gene. Overall, 6 of the 7 trimethoprim-sulfamethoxazole-resistant isolates carried the sul1 or sul2 genes, while only 2 of the 8 chloramphenicol-resistant isolates carried the catA1 gene. Although 9 isolates carried class I integrons, only 4 isolates carried the gene cassettes dfrA12-aadA2 (2 isolates), dfrA17-aadA5 (1 isolate), extX-psp-aadA2 (1 isolate), and dfrA27 (1 isolate). The most common plasmid replicon was FIB (8 isolates, 72.7%), followed by K/B (4 isolates, 36.4%). Antimicrobial resistance monitoring and molecular analysis of APEC should be performed continuously to surveil the transmission between poultry farms.
Collapse
Affiliation(s)
- Mi Young Yoon
- Quality Management Department, Samhwa GPS Breeding Agri. Inc., Hongseong-gun, Chung Nam, 32291, Republic of Korea
| | - Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jong Su Ha
- Quality Management Department, Samhwa GPS Breeding Agri. Inc., Hongseong-gun, Chung Nam, 32291, Republic of Korea
| | - Kwang Won Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, 39762, USA
| | - Eun Bi Noh
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Buk-gu, Daegu, 41566, Republic of Korea
| | - Se Hyun Son
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Buk-gu, Daegu, 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
8
|
Nishikawa R, Murase T, Ozaki H. Plasmid-mediated quinolone resistance in Escherichia coli isolates from commercial broiler chickens and selection of fluoroquinolone-resistant mutants. Poult Sci 2020; 98:5900-5907. [PMID: 31198966 DOI: 10.3382/ps/pez337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/29/2019] [Indexed: 11/20/2022] Open
Abstract
Plasmid-mediated quinolone resistance (PMQR) is a potential concern for animal husbandry and public health. Escherichia coli isolates from a total of 109 fecal samples collected from 6 commercial broiler farms between 2007 and 2011 were examined for PMQR genes, and transfer of these genes was tested by conjugation analysis to elucidate the prevalence and spread of PMQR in broiler chickens. Two isolates from 2 farms harbored the aac(6')-Ib-cr gene that was not detected in plasmids using Southern blot analysis of S1 nuclease-digested genomic DNA separated by pulsed-field gel electrophoresis. In these 2 isolates, nucleotide mutations in the gyrA and parC genes that result in amino acid substitutions were detected. Additionally, a total of 6 isolates originating from 6 chickens from the 2 farms were positive for the qnrS1 gene. In 2 of the 6 isolates, the qnrS1 gene was transferred to a recipient strain. Two transconjugants harboring the qnrS1 gene were cultured on media supplemented with successively higher concentrations of enrofloxacin (ERFX). After a 5-time subcultivation, the ERFX MICs reached 8 and 16 μg/mL, and no nucleotide mutations were detected in the gyrA, gyrB, parC, and parE genes. Our results suggest that the prevalence of PMQR was relatively low in broiler chickens and that exposure of bacteria carrying PMQR genes to the selective pressure of fluoroquinolones can result in resistance to fluoroquinolone, which is not caused by mutations in genes encoding topoisomerases.
Collapse
Affiliation(s)
- Ryo Nishikawa
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Toshiyuki Murase
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Hiroichi Ozaki
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
9
|
Brisola MC, Crecencio RB, Bitner DS, Frigo A, Rampazzo L, Stefani LM, Faria GA. Escherichia coli used as a biomarker of antimicrobial resistance in pig farms of Southern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:362-368. [PMID: 30081373 DOI: 10.1016/j.scitotenv.2018.07.438] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/29/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to verify the presence of antimicrobial resistant strains of Escherichia coli in pig farms and to use it as a biomarker to evaluate phenotypic and genotypic profiles of antimicrobial susceptibility, as well as the presence of Extended Spectrum Beta-lactamases (ESBLs) and fluoroquinolone resistance genes. Several samples (n = 306) collected from swine farms (n = 100) of Southern Brazil were used for E. coli isolation: 103 of swine feces, 105 of water, and 98 of soil. E. coli isolates were submitted to the disk-diffusion test to verify their antimicrobial susceptibility, to disk-approximation test to detect ESBL-producers, and to PCR analysis to search for ESBLs genes (blaCTY-M2, blaSHV-1, blaTEM-1, blaCTX-M2, blaOXA-1, blaPSE-1) and quinolone resistance genes (qnrA, qnrB and qnrS). The percentage of E. coli isolates found in feces, water and soil samples was 66.02%, 30.48% and 35.71%, respectively. The highest percentages of resistance were obtained for sulfamethoxazole associated with trimethoprim (63.70%), colistin (45.19%) and enrofloxacin (39.26%). Regarding the levels of multidrug resistance, 37.04% of the isolates were resistant to three or more classes of antimicrobials. The most common profile (16%) of multirresistance was GEM-SUT-ENO-COL. The index of multiple resistance to antimicrobials (IRMA) was above 0.2 in 78% of the multiresistant isolates. Out of 135 E. coli isolates, 7.41% was ESBL-producers, of which 50% showed the blaCMY-M2 gene, 40% the blaTEM-1 and 70% the qnrS gene. Of non-ESBL-producing strains resistant to enrofloxacin, 13.04% were positives for qnrS gene. These results demonstrated the presence of fecal contamination in the environment, in addition to high resistance indexes for several antimicrobials, including beta-lactams and fluoroquinolones, which was confirmed by the genetic detection of ESBLs and qnr genes.
Collapse
Affiliation(s)
- Maiara Cristiane Brisola
- Post Graduation Program in Animal Science, State University of Santa Catarina (UDESC), Western Center of Education, Chapecó, Santa Catarina, Brazil.
| | - Regiane Boaretto Crecencio
- Post Graduation Program in Animal Science, State University of Santa Catarina (UDESC), Western Center of Education, Chapecó, Santa Catarina, Brazil
| | - Dinael Simão Bitner
- Graduate in Animal Science, State University of Santa Catarina (UDESC), Western Center of Education, Chapecó, Santa Catarina, Brazil
| | - Angélica Frigo
- Graduate in Animal Science, State University of Santa Catarina (UDESC), Western Center of Education, Chapecó, Santa Catarina, Brazil
| | - Luana Rampazzo
- Graduate in Animal Science, State University of Santa Catarina (UDESC), Western Center of Education, Chapecó, Santa Catarina, Brazil
| | - Lenita Moura Stefani
- Department of Animal Science, State University of Santa Catarina (UDESC), Western Center of Education, Chapecó, Santa Catarina, Brazil
| | - Gláucia Amorim Faria
- Department of Mathematics, Paulista State University Júlio de Mesquita Filho (UNESP), Ilha Solteira, São Paulo, Brazil
| |
Collapse
|
10
|
Sung JY. Analysis of Quinolone Resistance Determinants in Escherichia coli Isolated from Clinical Specimens and Livestock Feces. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2018. [DOI: 10.15324/kjcls.2018.50.4.422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ji Youn Sung
- Department of Biomedical Laboratory Science, Far East University, Eumseong, Korea
| |
Collapse
|
11
|
Kurnia RS, Indrawati A, Mayasari NLPI, Priadi A. Molecular detection of genes encoding resistance to tetracycline and determination of plasmid-mediated resistance to quinolones in avian pathogenic Escherichia coli in Sukabumi, Indonesia. Vet World 2018; 11:1581-1586. [PMID: 30587892 PMCID: PMC6303495 DOI: 10.14202/vetworld.2018.1581-1586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022] Open
Abstract
AIM This study aimed to identify genes encoding resistance to tetracycline (TE) and plasmid-mediated resistance to quinolones in Escherichia coli isolates from clinical cases of avian colibacillosis in Sukabumi, Indonesia. MATERIALS AND METHODS A total of 25 E. coli archive isolates were collected in 2013-2017 from clinical cases of avian colibacillosis in Sukabumi, Indonesia. All isolates were tested for TE and quinolone resistance using the disk diffusion method. TE -resistant E. coli isolates were screened for the presence of tet(A) and tet(B) genes by single polymerase chain reaction (PCR). The qnr(A), qnr(B), and qnr(S) genes were detected by multiplex PCR in quinolone-resistant E. coli isolates. RESULTS Result of this study shows that 19 of 25 (76%) E. coli isolates are resistant to oxytetracycline and 64% are resistant to TE; among them, 63.2% and 31.5% were positive tet(A) and tet(B), respectively. 13 out of 25 (52%) are resistant to ciprofloxacin and 36% are resistant to enrofloxacin either norfloxacin; among them, 61.6% were positive qnr(A), 7.7% were positive qnr(B), 23% were positive qnr(S), and 7.7% were positive both of qnr(A) and qnr(S). CONCLUSION This study shows that a few pathogens of E. coli are resistant to TE and quinolone. The frequency of tet and qnr genes that are responsible for this resistance among avian pathogenic E. coli isolates in Sukabumi, Indonesia, was high.
Collapse
Affiliation(s)
- Ryan Septa Kurnia
- Department of Animal Disease and Veterinary Health, Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Indonesia
| | - Agustin Indrawati
- Department of Animal Disease and Veterinary Health, Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Indonesia
| | - Ni Luh Putu Ika Mayasari
- Department of Animal Disease and Veterinary Health, Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Indonesia
| | - Adin Priadi
- Animal Health Diagnostic Unit, PT Medika Satwa Laboratories, West Java, Indonesia
| |
Collapse
|