1
|
Genomic Diversity of CRESS DNA Viruses in the Eukaryotic Virome of Swine Feces. Microorganisms 2021; 9:microorganisms9071426. [PMID: 34361862 PMCID: PMC8307498 DOI: 10.3390/microorganisms9071426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/29/2023] Open
Abstract
Replication-associated protein (Rep)-encoding single-stranded DNA (CRESS DNA) viruses are a diverse group of viruses, and their persistence in the environment has been studied for over a decade. However, the persistence of CRESS DNA viruses in herds of domestic animals has, in some cases, serious economic consequence. In this study, we describe the diversity of CRESS DNA viruses identified during the metagenomics analysis of fecal samples collected from a single swine herd with apparently healthy animals. A total of nine genome sequences were assembled and classified into two different groups (CRESSV1 and CRESSV2) of the Cirlivirales order (Cressdnaviricota phylum). The novel CRESS DNA viral sequences shared 85.8–96.8% and 38.1–94.3% amino acid sequence identities for the Rep and putative capsid protein sequences compared to their respective counterparts with extant GenBank record. Data presented here show evidence for simultaneous infection of swine herds with multiple novel CRESS DNA viruses, including po-circo-like viruses and fur seal feces-associated circular DNA viruses. Given that viral genomes with similar sequence and structure have been detected in swine fecal viromes from independent studies, investigation of the association between presence of CRESS DNA viruses and swine health conditions seems to be justified.
Collapse
|
2
|
Barrón-Rodríguez RJ, Rojas-Anaya E, Ayala-Sumuano JT, Romero-Espinosa JÁI, Vázquez-Pérez JA, Cortés-Cruz M, García-Espinosa G, Loza-Rubio E. Swine virome on rural backyard farms in Mexico: communities with different abundances of animal viruses and phages. Arch Virol 2021; 166:475-489. [PMID: 33394173 DOI: 10.1007/s00705-020-04894-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/06/2020] [Indexed: 11/24/2022]
Abstract
Domestic swine have been introduced by humans into a wide diversity of environments and have been bred in different production systems. This has resulted in an increased risk for the occurrence and spread of diseases. Although viromes of swine in intensive farms have been described, little is known about the virus communities in backyard production systems around the world. The aim of this study was to describe the viral diversity of 23 healthy domestic swine maintained in rural backyards in Morelos, Mexico, through collection and analysis of nasal and rectal samples. Next-generation sequencing was used to identify viruses that are present in swine. Through homology search and bioinformatic analysis of reads and their assemblies, we found that rural backyard swine have a high degree of viral diversity, different from those reported in intensive production systems or under experimental conditions. There was a higher frequency of bacteriophages and lower diversity of animal viruses than reported previously. In addition, sapoviruses, bocaparvoviruses, and mamastroviruses that had not been reported previously in our country were identified. These findings were correlated with the health status of animals, their social interactions, and the breeding/rearing environment (which differed from intensive systems), providing baseline information about viral communities in backyard swine.
Collapse
Affiliation(s)
- Rodrigo Jesús Barrón-Rodríguez
- Laboratorio de Biotecnología en Salud Animal, Centro Nacional de Investigación Disciplinaria en Microbiología Animal (CENID-Microbiología), Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), carretera federal México-Toluca km 15.5, colonia palo Alto, Cuajimalpa, P.C. 05110, Mexico City, Mexico.,Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, colonia Ciudad universitaria, Coyoacán, P.C. 04510, Mexico City, Mexico
| | - Edith Rojas-Anaya
- Laboratorio de Biotecnología en Salud Animal, Centro Nacional de Investigación Disciplinaria en Microbiología Animal (CENID-Microbiología), Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), carretera federal México-Toluca km 15.5, colonia palo Alto, Cuajimalpa, P.C. 05110, Mexico City, Mexico
| | - Jorge Tonatiuh Ayala-Sumuano
- Idix S.A. de C.V., Sonterra 3035 interior 26, Fraccionamiento Sonterra, P.C. 76230, Santiago de Querétaro, Querétaro, Mexico
| | - José Ángel Iván Romero-Espinosa
- Laboratorio de Virología, Instituto Nacional de Enfermedades Respiratorias (INER), Calzada de Tlalpan 4502, Del. Tlalpan, colonia Sección XVI, Tlalpan, P.C. 14080, Mexico City, Mexico
| | - Joel Armando Vázquez-Pérez
- Laboratorio de Virología, Instituto Nacional de Enfermedades Respiratorias (INER), Calzada de Tlalpan 4502, Del. Tlalpan, colonia Sección XVI, Tlalpan, P.C. 14080, Mexico City, Mexico
| | - Moisés Cortés-Cruz
- Centro Nacional de Recursoso Genéticos (CNRG), Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Boulevard de la biodiversidad 400, Rancho las Cruces, P.C. 47600, Tepatitlán de Morelos, Jalisco, Mexico
| | - Gary García-Espinosa
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, colonia Ciudad universitaria, Coyoacán, P.C. 04510, Mexico City, Mexico
| | - Elizabeth Loza-Rubio
- Laboratorio de Biotecnología en Salud Animal, Centro Nacional de Investigación Disciplinaria en Microbiología Animal (CENID-Microbiología), Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), carretera federal México-Toluca km 15.5, colonia palo Alto, Cuajimalpa, P.C. 05110, Mexico City, Mexico.
| |
Collapse
|
3
|
Fur Seal Feces-Associated Circular DNA Virus Identified in Pigs in Anhui, China. Virol Sin 2020; 36:25-32. [PMID: 32488409 PMCID: PMC7973343 DOI: 10.1007/s12250-020-00232-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/07/2020] [Indexed: 11/08/2022] Open
Abstract
Fur seal feces-associated circular DNA virus (FSfaCV) is an unclassified circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA virus that has been detected in mammals (fur seals and pigs). The biology and epidemiology of the virus remain largely unknown. To investigate the virus diversity among pigs in Anhui Province, China, we pooled 600 nasal samples in 2017 and detected viruses using viral metagenomic methods. From the assembled contigs, 12 showed notably high nucleotide acid sequence similarities to the genome sequences of FSfaCVs. Based on these sequences, a full-length genome sequence of the virus was then obtained using overlapping PCR and sequencing, and the virus was designated as FSfaCV-CHN (GenBank No. MK462122). This virus shared 91.3% and 90.9% genome-wide nucleotide sequence similarities with the New Zealand fur seal strain FSfaCV-as50 and the Japanese pig strain FSfaCV-JPN1, respectively. It also clustered with the two previously identified FSfaCVs in a unique branch in the phylogenetic tree based on the open reading frame 2 (ORF2), Rep-coding gene, and the genome of the reference CRESS DNA viruses. Further epidemiological investigation using samples collected in 2018 showed that the overall positive rate for the virus was 56.4% (111/197) in Anhui Province. This is the first report of FSfaCVs identified in pigs in China, and further epidemiological studies are warranted to evaluate the influence of the virus on pigs.
Collapse
|
4
|
Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS DNA) Viruses: Ubiquitous Viruses With Small Genomes and a Diverse Host Range. Adv Virus Res 2018; 103:71-133. [PMID: 30635078 DOI: 10.1016/bs.aivir.2018.10.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
5
|
A new comprehensive method for detection of livestock-related pathogenic viruses using a target enrichment system. Biochem Biophys Res Commun 2017; 495:1871-1877. [PMID: 29223400 PMCID: PMC7124307 DOI: 10.1016/j.bbrc.2017.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022]
Abstract
We tested usefulness of a target enrichment system SureSelect, a comprehensive viral nucleic acid detection method, for rapid identification of viral pathogens in feces samples of cattle, pigs and goats. This system enriches nucleic acids of target viruses in clinical/field samples by using a library of biotinylated RNAs with sequences complementary to the target viruses. The enriched nucleic acids are amplified by PCR and subjected to next generation sequencing to identify the target viruses. In many samples, SureSelect target enrichment method increased efficiencies for detection of the viruses listed in the biotinylated RNA library. Furthermore, this method enabled us to determine nearly full-length genome sequence of porcine parainfluenza virus 1 and greatly increased Breadth, a value indicating the ratio of the mapping consensus length in the reference genome, in pig samples. Our data showed usefulness of SureSelect target enrichment system for comprehensive analysis of genomic information of various viruses in field samples. Development of a comprehensive method to detect viruses using SureSelect system. A method by which almost the full length of the viral genome can be determined without virus isolation. Widely available methods for comprehensive analysis of virus genomic information.
Collapse
|