1
|
Zhao D, Wu J, Ma Y, Zhang J, Feng X, Fan Y, Xiong X, Fu W, Li J, Xiong Y. The molecular characteristic analysis of TRIB2 gene and its expressional patterns in Bos grunniens tissue and granulosa cells. Anim Biotechnol 2023; 34:2846-2854. [PMID: 36125800 DOI: 10.1080/10495398.2022.2121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Tribbles homolog 2 (TRIB2) plays an important role in the follicular development of female mammals. However, its expression and function in the yak (Bos grunniens) are still unclear. In this study, we predicted the molecular characteristics of TRIB2, and revealed its expression pattern in yak (Bos grunniens) tissues and ovarian granulosa cells. We cloned the full length of the yak TRIB2 gene obtained by RT-PCR was 1368 bp and the coding sequence (CDS) was 624 bp, encoding 207 amino acids (AA). Homology analysis showed that the yak TRIB2 is highly conserved among species. TRIB2 was detected to be extensively expressed in seven tissues of the yak liver, spleen, lung, kidney, ovary, oviduct and uterus by qPCR. The expression of TRIB2 mRNA in the ovary during gestation was significantly lower than that in the non-pregnant (p < 0.05). At each stage of follicle development, the TRIB2 mRNA in granulosa cells showed a significant upward trend with the development of follicles. The expression of TRIB2 gradually decreased with the increase of the culture time of the granulosa cells in vitro. In conclusion, these results suggest that TRIB2 may play an important role in the follicular development of yaks.
Collapse
Affiliation(s)
- Dan Zhao
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Jiyun Wu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Jiyue Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Xinxin Feng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Yiling Fan
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Xianrong Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Wei Fu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Jian Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| | - Yan Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan Province, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Abstract
There has been increasing interest in the role of hypoxia in the microenvironment of organs, because of the discovery of hypoxia-inducible factor-1 (HIF1), which acts as a transcription factor for many genes activated specifically under hypoxic conditions. The ovary changes day by day during the estrous cycle as it goes through phases of follicular growth, ovulation, and formation and regression of the corpus luteum (CL). These phenomena are regulated by hypothalamic and pituitary hormones, sex steroids, peptides and cytokines, as well as oxygen conditions. Hypoxia strongly induces angiogenesis via transcription of a potent angiogenic factor, vascular endothelial growth factor (VEGF), that is regulated by HIF1. A CL forms with a rapid increase of angiogenesis that is mainly induced by HIF1-VEGF signaling. Hypoxia also contributes to luteolysis by down-regulating progesterone synthesis and by up-regulating apoptosis of luteal cells. This review focuses on recent studies on the roles of hypoxia- and HIF1-regulated genes in the regulation of bovine CL function.
Collapse
Affiliation(s)
- Ryo Nishimura
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Kiyoshi Okuda
- Obihiro University of Agriculture & Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|