1
|
Nomura N, Matsuno K, Shingai M, Ohno M, Sekiya T, Omori R, Sakoda Y, Webster RG, Kida H. Updating the influenza virus library at Hokkaido University -It's potential for the use of pandemic vaccine strain candidates and diagnosis. Virology 2021; 557:55-61. [PMID: 33667751 DOI: 10.1016/j.virol.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Genetic reassortment of influenza A viruses through cross-species transmission contributes to the generation of pandemic influenza viruses. To provide information on the ecology of influenza viruses, we have been conducting a global surveillance of zoonotic influenza and establishing an influenza virus library. Of 4580 influenza virus strains in the library, 3891 have been isolated from over 70 different bird species. The remaining 689 strains were isolated from humans, pigs, horses, seal, whale, and the environment. Phylogenetic analyses of the HA genes of the library isolates demonstrate that the library strains are distributed to all major known clusters of the H1, H2 and H3 subtypes of HA genes that are prevalent in humans. Since past pandemic influenza viruses are most likely genetic reassortants of zoonotic and seasonal influenza viruses, a vast collection of influenza A virus strains from various hosts should be useful for vaccine preparation and diagnosis for future pandemics.
Collapse
Affiliation(s)
- Naoki Nomura
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Keita Matsuno
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
| | - Marumi Ohno
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Toshiki Sekiya
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Ryosuke Omori
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
| | | | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; Collaborating Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
2
|
H2 influenza viruses: designing vaccines against future H2 pandemics. Biochem Soc Trans 2019; 47:251-264. [PMID: 30647144 DOI: 10.1042/bst20180602] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022]
Abstract
Influenza-related pathologies affect millions of people each year and the impact of influenza on the global economy and in our everyday lives has been well documented. Influenza viruses not only infect humans but also are zoonotic pathogens that infect various avian and mammalian species, which serve as viral reservoirs. While there are several strains of influenza currently circulating in animal species, H2 influenza viruses have a unique history and are of particular concern. The 1957 'Asian Flu' pandemic was caused by H2N2 influenza viruses and circulated among humans from 1957 to 1968 before it was replaced by viruses of the H3N2 subtype. This review focuses on avian influenza viruses of the H2 subtype and the role these viruses play in human infections. H2 influenza viral infections in humans would present a unique challenge to medical and scientific researchers. Much of the world's population lacks any pre-existing immunity to the H2N2 viruses that circulated 50-60 years ago. If viruses of this subtype began circulating in the human population again, the majority of people alive today would have no immunity to H2 influenza viruses. Since H2N2 influenza viruses have effectively circulated in people in the past, there is a need for additional research to characterize currently circulating H2 influenza viruses. There is also a need to stockpile vaccines that are effective against both historical H2 laboratory isolates and H2 viruses currently circulating in birds to protect against a future pandemic.
Collapse
|