1
|
Zhang H, Du H, Sun K, Wang J, Li P, Zhou Y, Sun Y. Construction and analysis of the immune effect of subunit vaccines based on the flagellin FlaB and FlaC of Vibrioharveyi. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110130. [PMID: 39826628 DOI: 10.1016/j.fsi.2025.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/14/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Vibrio harveyi is a common sort of pathogenic bacterium in marine, which annually gives rise to huge financial losses in aquaculture industry. Flagellin is one of the important virulence factors for bacteria, but meanwhile it is also a preferable vaccine candidate. In this study, we have identified and analyzed two flagellin antigens of V. harveyi, FlaB and FlaC; and moreover, on this basis, two subunit vaccines (rFlaB and rFlaC) were constructed, and the potential as vaccines against V. harveyi infection were determined and compared. Sequence analysis indicated that the coding region of FlaB was 1131 bp, sharing the highest sequence identity (97.07 %) with the counterparts of V. campbellii, and that FlaC (1155 bp) shared the highest sequence identity (98.18 %) with the counterparts of V. campbellii. The vaccine potential of subunit vaccines, rFlaB and rFlaC, were analyzed in the Epinephelus coioides model. The results showed that fish vaccinated with rFlaB or rFlaC at 4-week post-vaccination (p.v.), exhibiting a relative percent survival (RPS) of 81.8 % and 59.1 %, respectively; when fish were vaccinated with rFlaB or rFlaC at 8-week p.v., the RPS of rFlaB and rFlaC were 76.2 % and 42.9 %, respectively. Compared to control group, immunological analysis showed that both rFlaB and rFlaC could elicited specific antibody expression and innate immune responses. Of note, rFlaB could induce higher levels of IgM, AKP, LZM, ACP and SOD activity in fish in comparison with rFlaC. Additionally, qPCR results manifested that the expressions of IL-1β, CD4, CD8α, IgM, IFNγ, MHCⅠα, MHCⅡα, TLR5M and TLR5S were significantly up-regulated in the fish immunized with rFlaB and rFlaC, indicating their ability to activate innate immunity and trigger the inflammatory and cell immune responses. Overall, FlaB is superior to FlaC as regards potential as vaccines. This research has developed two promising subunit vaccines against diseases caused by V. harveyi that are well-suited for application in aquaculture.
Collapse
Affiliation(s)
- Han Zhang
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Hainan, China
| | - Hehe Du
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Hainan, China
| | - Kang Sun
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Hainan, China
| | - Junfang Wang
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Hainan, China; Hainan Vocational University of Science and Technology, Haikou 570228, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Yongcan Zhou
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Hainan, China; Engineering Research Center of Hainan Province for Blue Carbon and Coastal Wetland Conservation·and·Restoration, China.
| | - Yun Sun
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Hainan, China; Engineering Research Center of Hainan Province for Blue Carbon and Coastal Wetland Conservation·and·Restoration, China; International Joint Research Center of Hainan Province for Blue Carbon and Coastal Wetland, China.
| |
Collapse
|
2
|
Li J, Shen J, Zhuang B, Wei M, Liu Y, Liu D, Yan W, Jia X, Jin Y. Light-triggered on-site rapid formation of antibacterial hydrogel dressings for accelerated healing of infected wounds. BIOMATERIALS ADVANCES 2022; 136:212784. [PMID: 35929299 DOI: 10.1016/j.bioadv.2022.212784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
An optimal wound dressing can seal variously shaped wounds and provide a complete barrier to resist bacterial invasion; more importantly, the dressing can be stretched or compressed when the wounds are subjected to external forces and quickly return to its original state after the forces are withdrawn. Here, we designed dressings with light-triggered on-site rapid formation of antibacterial hydrogel for the accelerated healing of infected wounds. The pro-hydrogel, composed of acrylamide (AM) and dopamine-hyaluronic acid-ε-poly-l-lysine (DA-HA-EPL), was filled into the Vibrio vulnificus-infected wound. A 405-nm blue light was exerted on the wound to rapidly photopolymerize AM to its polymer, i.e., polyacrylamide (PAM). A hydrogel network of PAM/DA-HA-EPL immediately formed on site within several seconds to insulate the wound. PAM/DA-HA-EPL possessed adhesion performance to adapt to changes in wound morphologies due to external forces. Moreover, it presented high antibacterial ability due to the presence of EPL, in vitro biocompatibility and the ability to promote cell migration. Vibrio vulnificus-infected wounds were established on full-thickness mouse skin, and the hydrogel dressing exhibited high healing efficiency in terms of skin tissue regeneration, collagen deposition, and angiogenesis. PAM/DA-HA-EPL is a promising hydrogel dressing for the accelerated healing of infected wounds.
Collapse
Affiliation(s)
- Jingfei Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jintao Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo Zhuang
- Department of Chemical Defense, Institute of NBC Defense, Beijing 102205, China
| | - Meng Wei
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yan Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Dongdong Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenrui Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xueli Jia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
3
|
Gu QQ, Wang GH, Li NQ, Hao DF, Liu HM, Wang CB, Hu YH, Zhang M. Evaluation of the efficacy of a novel Vibrio vulnificus vaccine based on antibacterial peptide inactivation in turbot, Scophthalmus maximus. FISH & SHELLFISH IMMUNOLOGY 2021; 118:197-204. [PMID: 34509628 DOI: 10.1016/j.fsi.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Tongue sole tissue factor pathway inhibitor 2 (TFPI-2) C-terminus derived peptide, TC38, has previously been shown to kill Vibrio vulnificus cells without lysing the cell membrane; thus, the remaining bacterial shell has potential application as an inactivated vaccine. Therefore, this study aimed to evaluate the immune response induced by the novel V. vulnificus vaccine. The protective potential of TC38-killed V. vulnificus cells (TKC) was examined in a turbot model. Fish were intramuscularly vaccinated with TKC or FKC (formalin-killed V. vulnificus cells) and challenged with a lethal-dose of V. vulnificus. The results showed that compared with FKC, TKC was effective in protecting fish against V. vulnificus infection, with relative percent of survival (RPS) rates of 53.29% and 63.64%, respectively. The immunological analysis revealed that compared with the FKC and control groups, the TKC group exhibited: 1) significantly higher respiratory burst ability and bactericidal activity of macrophages at 7 d post-vaccination; 2) increased alkaline phosphatase, acid phosphatase, lysozyme, and total superoxide dismutase levels post-vaccination; 3) higher serum agglutinating antibody titer with corresponding higher serum bactericidal ability, and a more potent serum agglutination effect, as well as an increased IgM expression level; 4) higher expression of immune relevant genes, which were involved in both innate and adaptive immunity. Taken together, this is the first study to develop a novel V. vulnificus inactivated vaccine based on AMP inactivation, and TKC is an effective vaccine against V. vulnificus infection for aquaculture.
Collapse
Affiliation(s)
- Qin-Qin Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; School of Weihai Ocean Vocational College, Weihai, Shandong Province, 264300, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Ning-Qiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Dong-Fang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hong-Mei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yong-Hua Hu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
4
|
Yamazaki K, Kashimoto T, Morita M, Kado T, Matsuda K, Yamasaki M, Ueno S. Identification of in vivo Essential Genes of Vibrio vulnificus for Establishment of Wound Infection by Signature-Tagged Mutagenesis. Front Microbiol 2019; 10:123. [PMID: 30774628 PMCID: PMC6367243 DOI: 10.3389/fmicb.2019.00123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/18/2019] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus can cause severe necrotic lesions within a short time. Recently, it has been reported that the numbers of wound infection cases in healthy hosts are increasing, for which surgical procedures are essential in many instances to eliminate the pathogen owing to its rapid proliferation. However, the mechanisms by which V. vulnificus can achieve wound infection in healthy hosts have not been elucidated. Here, we advance a systematic understanding of V. vulnificus wound infection through genome-wide identification of the relevant genes. Signature-tagged mutagenesis (STM) has been developed to identify functions required for the establishment of infection including colonization, rapid proliferation, and pathogenicity. Previously, STM had been regarded to be unsuitable for negative selection to detect the virulence genes of V. vulnificus owing to the low colonization and proliferation ability of this pathogen in the intestinal tract and systemic circulation. Alternatively, we successfully identified the virulence genes by applying STM to a murine model of wound infection. We examined a total of 5418 independent transposon insertion mutants by signature-tagged transposon mutagenesis and detected 71 clones as attenuated mutants consequent to disruption of genes by the insertion of a transposon. This is the first report demonstrating that the pathogenicity of V. vulnificus during wound infection is highly dependent on its characteristics: flagellar-based motility, siderophore-mediated iron acquisition system, capsular polysaccharide, lipopolysaccharide, and rapid chromosome partitioning. In particular, these functions during the wound infection process and are indispensable for proliferation in healthy hosts. Our results may thus allow the potential development of new strategies and reagents to control the proliferation of V. vulnificus and prevent human infections.
Collapse
Affiliation(s)
- Kohei Yamazaki
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Takashige Kashimoto
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Mio Morita
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Takehiro Kado
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kaho Matsuda
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Moeko Yamasaki
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Shunji Ueno
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|