1
|
Zheng X, Huang CH, Yan S, Rong MD. Advances and applications of genome-edited animal models for severe combined immunodeficiency. Zool Res 2025; 46:249-260. [PMID: 39846200 PMCID: PMC11891005 DOI: 10.24272/j.issn.2095-8137.2024.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 01/24/2025] Open
Abstract
Severe combined immunodeficiency disease (SCID), characterized by profound immune system dysfunction, can lead to life-threatening infections and death. Animal models play a pivotal role in elucidating biological processes and advancing therapeutic strategies. Recent advances in gene-editing technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR/Cas9, and base editing, have significantly enhanced the generation of SCID models. These models have not only deepened our understanding of disease pathophysiology but have also driven progress in cancer therapy, stem cell transplantation, organ transplantation, and infectious disease management. This review provides a comprehensive overview of current SCID models generated using novel gene-editing approaches, highlighting their potential applications in translational medicine and their role in advancing biomedical research.
Collapse
Affiliation(s)
- Xiao Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Chun-Hui Huang
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
- School of medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
- School of medicine, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Neurology, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510220, China. E-mail:
| | - Ming-Deng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China. E-mail:
| |
Collapse
|
2
|
Miyasaka Y, Wang J, Hattori K, Yamauchi Y, Hoshi M, Yoshimi K, Ishida S, Mashimo T. A high-quality severe combined immunodeficiency (SCID) rat bioresource. PLoS One 2022; 17:e0272950. [PMID: 35960733 PMCID: PMC9374221 DOI: 10.1371/journal.pone.0272950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Immunodeficient animals are valuable models for the engraftment of exogenous tissues; they are widely used in many fields, including the creation of humanized animal models, as well as regenerative medicine and oncology. Compared with mice, laboratory rats have a larger body size and can more easily undergo transplantation of various tissues and organs. Considering the absence of high-quality resources of immunodeficient rats, we used the CRISPR/Cas9 genome editing system to knock out the interleukin-2 receptor gamma chain gene (Il2rg) in F344/Jcl rats—alone or together with recombination activating gene 2 (Rag2)—to create a high-quality bioresource that researchers can freely use: severe combined immunodeficiency (SCID) rats. We selected one founder rat with frame-shift mutations in both Il2rg (5-bp del) and Rag2 ([1-bp del+2-bp ins]/[7-bp del+2-bp ins]), then conducted mating to establish a line of immunodeficient rats. The immunodeficiency phenotype was preliminarily confirmed by the presence of severe thymic hypoplasia in Il2rg-single knockout (sKO) and Il2rg/Rag2-double knockout (dKO) rats. Assessment of blood cell counts in peripheral blood showed that the white blood cell count was significantly decreased in sKO and dKO rats, while the red blood cell count was unaffected. The decrease in white blood cell count was mainly caused by a decrease in lymphocytes. Furthermore, analyses of lymphocyte populations via flow cytometry showed that the numbers of B cells (CD3- CD45+) and natural killer cells (CD3- CD161+) were markedly reduced in both knockout rats. In contrast, T cells were markedly reduced but showed slightly different results between sKO and dKO rats. Notably, our immunodeficient rats do not exhibit growth retardation or gametogenesis defects. This high-quality SCID rat resource is now managed by the National BioResource Project in Japan. Our SCID rat model has been used in various research fields, demonstrating its importance as a bioresource.
Collapse
Affiliation(s)
- Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Jinxi Wang
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kosuke Hattori
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yuko Yamauchi
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Miho Hoshi
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kazuto Yoshimi
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Saeko Ishida
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
3
|
Kim YY, Kim JS, Che JH, Ku SY, Kang BC, Yun JW. Comparison of Genetically Engineered Immunodeficient Animal Models for Nonclinical Testing of Stem Cell Therapies. Pharmaceutics 2021; 13:130. [PMID: 33498509 PMCID: PMC7909568 DOI: 10.3390/pharmaceutics13020130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
For the recovery or replacement of dysfunctional cells and tissue-the goal of stem cell research-successful engraftment of transplanted cells and tissues are essential events. The event is largely dependent on the immune rejection of the recipient; therefore, the immunogenic evaluation of candidate cells or tissues in immunodeficient animals is important. Understanding the immunodeficient system can provide insights into the generation and use of immunodeficient animal models, presenting a unique system to explore the capabilities of the innate immune system. In this review, we summarize various immunodeficient animal model systems with different target genes as valuable tools for biomedical research. There have been numerous immunodeficient models developed by different gene defects, resulting in many different features in phenotype. More important, mice, rats, and other large animals exhibit very different immunological and physiological features in tissue and organs, including genetic background and a representation of human disease conditions. Therefore, the findings from this review may guide researchers to select the most appropriate immunodeficient strain, target gene, and animal species based on the research type, mutant gene effects, and similarity to human immunological features for stem cell research.
Collapse
Affiliation(s)
- Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Jin-Soo Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jun-Won Yun
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| |
Collapse
|