1
|
Jiang S, Huang X. Host responses against the fish parasitizing ciliate Cryptocaryon irritans. Parasite Immunol 2023; 45:e12967. [PMID: 36606416 DOI: 10.1111/pim.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
The parasitic ciliate Cryptocaryon irritans, which infects almost all marine fish species occurring in both tropical and subtropical regions throughout the world. The disease, cryptocaryonosis, accounts for significant economic losses to the aquaculture industry. This review attempts to provide a comprehensive overview of the biology of the parasite, host-parasite interactions and both specific and non-specific host defense mechanisms are responsible for the protection of fish against challenge infections with this ciliate. Also, this article reflects the current interest in this subject area and the quest to develop an available vaccine against the disease. Due to the high frequency of clinical fish cryptocaryonosis, the study of fish immune responses to C. irritans provides an optimal experimental model for understanding immunity against extracellular protozoa.
Collapse
Affiliation(s)
- Shuiqing Jiang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohong Huang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Ahamefule CS, Ezeuduji BC, Ogbonna JC, Moneke AN, Ike AC, Wang B, Jin C, Fang W. Marine Bioactive Compounds against Aspergillus fumigatus: Challenges and Future Prospects. Antibiotics (Basel) 2020; 9:E813. [PMID: 33207554 PMCID: PMC7698247 DOI: 10.3390/antibiotics9110813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
With the mortality rate of invasive aspergillosis caused by Aspergillus fumigatus reaching almost 100% among some groups of patients, and with the rapidly increasing resistance of A. fumigatus to available antifungal drugs, new antifungal agents have never been more desirable than now. Numerous bioactive compounds were isolated and characterized from marine resources. However, only a few exhibited a potent activity against A. fumigatus when compared to the multitude that did against some other pathogens. Here, we review the marine bioactive compounds that display a bioactivity against A. fumigatus. The challenges hampering the discovery of antifungal agents from this rich habitat are also critically analyzed. Further, we propose strategies that could speed up an efficient discovery and broaden the dimensions of screening in order to obtain promising in vivo antifungal agents with new modes of action.
Collapse
Affiliation(s)
- Chukwuemeka Samson Ahamefule
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China; (C.S.A.); (B.W.)
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
- Department of Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (J.C.O.); (A.N.M.); (A.C.I.)
| | | | - James C. Ogbonna
- Department of Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (J.C.O.); (A.N.M.); (A.C.I.)
| | - Anene N. Moneke
- Department of Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (J.C.O.); (A.N.M.); (A.C.I.)
| | - Anthony C. Ike
- Department of Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (J.C.O.); (A.N.M.); (A.C.I.)
| | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China; (C.S.A.); (B.W.)
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Cheng Jin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China; (C.S.A.); (B.W.)
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China; (C.S.A.); (B.W.)
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| |
Collapse
|
3
|
Jawinski K, Hartmann M, Singh C, Kinnear E, Busse DC, Ciabattini A, Fiorino F, Medaglini D, Trombetta CM, Montomoli E, Contreras V, Le Grand R, Coiffier C, Primard C, Verrier B, Tregoning JS. Recombinant Haemagglutinin Derived From the Ciliated Protozoan Tetrahymena thermophila Is Protective Against Influenza Infection. Front Immunol 2019; 10:2661. [PMID: 31798589 PMCID: PMC6863932 DOI: 10.3389/fimmu.2019.02661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Current influenza vaccines manufactured using eggs have considerable limitations, both in terms of scale up production and the potential impact passaging through eggs can have on the antigenicity of the vaccine virus strains. Alternative methods of manufacture are required, particularly in the context of an emerging pandemic strain. Here we explore the production of recombinant influenza haemagglutinin using the ciliated protozoan Tetrahymena thermophila. For the first time we were able to produce haemagglutinin from both seasonal influenza A and B strains. This ciliate derived material was immunogenic, inducing an antibody response in both mice and non-human primates. Mice immunized with ciliate derived haemagglutinin were protected against challenge with homologous influenza A or B viruses. The antigen could also be combined with submicron particles containing a Nod2 ligand, significantly boosting the immune response and reducing the dose of antigen required. Thus, we show that Tetrahymena can be used as a manufacturing platform for viral vaccine antigens.
Collapse
Affiliation(s)
| | | | - Charanjit Singh
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Ekaterina Kinnear
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| | - David C Busse
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,VisMederi s.r.l., Siena, Italy
| | - Vanessa Contreras
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Le Kremlin-Bicêtre, France
| | - Celine Coiffier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | | | | | - John S Tregoning
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| |
Collapse
|