1
|
Tian Y, Jiang X, Bao C, Abdelaal T, Chen D, Wang W, Li F, Lei L, Li N. Mass cytometry analysis reveals a cross-tissue immune landscape in Actinobacillus pleuropneumoniae-induced pneumonia. Microbiol Spectr 2025:e0266524. [PMID: 40237529 DOI: 10.1128/spectrum.02665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Porcine contagious pleuropneumonia caused by Actinobacillus pleuropneumoniae (APP) is a fatal respiratory disease that threatens the worldwide farming industry's health. The immune responses of extrapulmonary tissues play an important role in developing porcine contagious pleuropneumonia; however, the immune responses of extrapulmonary tissues induced by APP are rarely uncovered. Here, we used high-dimensional mass cytometry to investigate the immune cell response in the spleen and peripheral blood during APP infection in mice. We found that the immune response triggered by APP was highly tissue-specific. Numerous infection time- or tissue-specific immune cell clusters, including previously unrecognized ones, were also identified in the spleen and peripheral blood. Integrative analysis of splenic lymphoid and myeloid cell clusters maps the dynamic immune response cellular network during APP infection. Surprisingly, during the early stages of APP infection, the majority of the top 6 cell clusters contributing to the infection time-specificity in the spleen were adaptive immune cell clusters rather than innate immune cell clusters, among which CD24hiMHCII+CD8+TEM cells exhibited a stronger expression of IFN-γ, IL-17A, and IL-10 compared to the CD24lo compartment. In peripheral blood, there was unprecedented heterogeneity in the immune cell composition. Also, peripheral immune cell clusters closely related to the severity of APP infection were identified. In summary, our data provide a systemic and comprehensive overview of the immune responses to APP infection in the spleen and peripheral blood. This provides a foundation for understanding the immune pathogenesis of APP and identifying potential diagnostic biomarkers and therapeutic targets. IMPORTANCE This study explored the cross-tissue immune dynamic landscape in the APP-induced pneumonia model by utilizing high-dimensional mass cytometry. We discovered that APP-induced immune responses are tissue-specific. Key infection-specific clusters in the spleen and peripheral blood were identified, some of which were previously unrecognized. Meanwhile, the specific functions of APP infection-related immune subsets were explored. The research systematically outlined an overview of immune responses in these tissues, deepening the understanding of APP pathogenesis and laying the foundation for the search for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yanyan Tian
- Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuan Jiang
- Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chuntong Bao
- Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tamin Abdelaal
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
- Department of Pattern Recognition and Bioinformatics Group, Delft University of Technology, Delft, Netherlands
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, Beijing, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, Beijing, China
| | - Fengyang Li
- Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liancheng Lei
- Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Na Li
- Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
2
|
Gazzinelli-Guimaraes PH, Jones SM, Voehringer D, Mayer-Barber KD, Samarasinghe AE. Eosinophils as modulators of host defense during parasitic, fungal, bacterial, and viral infections. J Leukoc Biol 2024; 116:1301-1323. [PMID: 39136237 DOI: 10.1093/jleuko/qiae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/25/2024] [Indexed: 11/28/2024] Open
Abstract
Eosinophils, traditionally associated as central innate effector cells with type 2 immunity during allergic and helminth parasitic diseases, have recently been revealed to have important roles in tissue homeostasis as well as host defense in a broader variety of infectious diseases. In a dedicated session at the 2023 biennial conference of the International Eosinophil Society titled "Eosinophils in Host Defense," the multifaceted roles eosinophils play against diverse pathogens, ranging from parasites to fungi, bacteria, and viruses, were presented. In this review, the session speakers offer a comprehensive summary of recent discoveries across pathogen classes, positioning eosinophils as pivotal leukocytes in both host defense and pathology. By unraveling the intricacies of eosinophil engagement in host resistance, this exploration may provide valuable insights not only to understand specific underpinnings of eosinophil functions related to each class of pathogens but also to develop novel therapeutics effective against a broad spectrum of infectious diseases.
Collapse
Affiliation(s)
- Pedro H Gazzinelli-Guimaraes
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington School of Medicine and Health Sciences, 2300 I Street NW, Washington, DC 20037, United States
| | - Shelby M Jones
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen, Wasserturmstrasse 3-5, 91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Bethesda, MD 20892, United States
| | - Amali E Samarasinghe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Children's Foundation Research Institute, 50 N Dunlap Street, Memphis, TN 38103, United States
| |
Collapse
|
3
|
Hua HB, Wang HJ. Significant association between methyl mercury level and latent tuberculosis infection risk: a cross-sectional study. BMC Pulm Med 2024; 24:375. [PMID: 39090607 PMCID: PMC11292858 DOI: 10.1186/s12890-024-03181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVES This cross-sectional study aimed to explore the association between methyl mercury (MeHg) level and latent tuberculosis infection (LTBI) risk based on the data from National Health and Nutrition Examination Survey (NHANES 2011-2012). METHODS A total of 5243 participants with 20 variables were enrolled. The importance of these variables on TB infection was first ranked by XGBoost and Random Forest methods. Then the association between MeHg level and infection risk was evaluated by restricted cubic spline, threshold effect, and generalized linear regression analyses. We also explored the factors correlated with the difference in MeHg level and finally conducted a mediation analysis to assess the mediating effect of MeHg in LTBI. RESULTS 521 participants were experiencing the LTBI, and 12 variables showed the differences between infection and non-infection groups (all P < 0.05). Of them, MeHg presented the highest importance on the LTBI. Restricted cubic spline (RCS) next revealed a significant non-linear correlation of MeHg with LTBI (all P < 0.05). Adjusted regression models further indicated their independent association (all P < 0.05), and infection risk increased with the increase of MeHg (P for trend < 0.05). We also found a significant turning point, and their association was significantly observed when MeHg > 5.75 µg/L (P < 0.05). In addition, asthma history was related to the difference in MeHg levels between LTBI and non-LTBI groups. Mediation analysis found that MeHg level partially mediated the association of asthma and LTBI risk (all P < 0.05). CONCLUSIONS Our study identified MeHg as an independent risk factor for LTBI risk. Their causal relationship needs more investigation to verify.
Collapse
Affiliation(s)
- Hai-Bo Hua
- Department of tuberculosis, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, No. 208, East Huan Cheng Road, Gongshu District, Hangzhou, 310000, Zhejiang, China
| | - Hui-Jie Wang
- Department of tuberculosis, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, No. 208, East Huan Cheng Road, Gongshu District, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
4
|
Gao X, Feng J, Wei L, Dong P, Chen J, Zhang L, Yang Y, Xu L, Wang H, Luo J, Qin M. Defensins: A novel weapon against Mycobacterium tuberculosis? Int Immunopharmacol 2024; 127:111383. [PMID: 38118315 DOI: 10.1016/j.intimp.2023.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Tuberculosis (TB) is a serious airborne communicable disease caused by organisms of the Mycobacterium tuberculosis (Mtb) complex. Although the standard treatment antimicrobials, including isoniazid, rifampicin, pyrazinamide, and ethambutol, have made great progress in the treatment of TB, problems including the rising incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the severe toxicity and side effects of antimicrobials, and the low immunity of TB patients have become the bottlenecks of the current TB treatments. Therefore, both safe and effective new strategies to prevent and treat TB have become a top priority. As a subfamily of cationic antimicrobial peptides, defensins are rich in cysteine and play a vital role in resisting the invasion of microorganisms and regulating the immune response. Inspired by studies on the roles of defensins in host defence, we describe their research history and then review their structural features and antimicrobial mechanisms, specifically for fighting Mtb in detail. Finally, we discuss the clinical relevance, therapeutic potential, and potential challenges of defensins in anti-TB therapy. We further debate the possible solutions of the current application of defensins to provide new insights for eliminating Mtb.
Collapse
Affiliation(s)
- Xuehan Gao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jihong Feng
- Department of Oncology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Linna Wei
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Pinzhi Dong
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jin Chen
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Langlang Zhang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuhan Yang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haiyan Wang
- Department of Epidemiology and Health Statistics, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Junmin Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Ming Qin
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
5
|
Gaur P, Zaffran I, George T, Alekberli FR, Ben-Zimra M, Levi-Schaffer F. The regulatory role of eosinophils in viral, bacterial, and fungal infections. Clin Exp Immunol 2022; 209:72-82. [PMID: 35467728 PMCID: PMC9307229 DOI: 10.1093/cei/uxac038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/15/2022] [Accepted: 04/24/2022] [Indexed: 12/14/2022] Open
Abstract
Eosinophils are innate immune cells typically associated with allergic and parasitic diseases. However, in recent years, eosinophils have also been ascribed a role in keeping homeostasis and in fighting several infectious diseases. Indeed, these cells circulate as mature cells in the blood and can be quickly recruited to the infected tissue. Moreover, eosinophils have all the necessary cellular equipment such as pattern recognition receptors (PRRs), pro-inflammatory cytokines, anti-bacterial proteins, and DNA traps to fight pathogens and promote an efficient immune response. This review summarizes some of the updated information on the role of eosinophils' direct and indirect mediated interactions with pathogens.
Collapse
Affiliation(s)
- Pratibha Gaur
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ilan Zaffran
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Tresa George
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Fidan Rahimli Alekberli
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Micha Ben-Zimra
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| |
Collapse
|