1
|
Qi WH, Hu LF, Gu YJ, Zhang XY, Jiang XM, Li WJ, Qi JS, Xiao GS, Jie H. Integrated mRNA-miRNA transcriptome profiling of blood immune responses potentially related to pulmonary fibrosis in forest musk deer. Front Immunol 2024; 15:1404108. [PMID: 38873601 PMCID: PMC11169664 DOI: 10.3389/fimmu.2024.1404108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
Background Forest musk deer (FMD, Moschus Berezovskii) is a critically endangered species world-widely, the death of which can be caused by pulmonary disease in the farm. Pulmonary fibrosis (PF) was a huge threat to the health and survival of captive FMD. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been involved in the regulation of immune genes and disease development. However, the regulatory profiles of mRNAs and miRNAs involved in immune regulation of FMD are unclear. Methods In this study, mRNA-seq and miRNA-seq in blood were performed to constructed coexpression regulatory networks between PF and healthy groups of FMD. The hub immune- and apoptosis-related genes in the PF blood of FMD were explored through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Further, protein-protein interaction (PPI) network of immune-associated and apoptosis-associated key signaling pathways were constructed based on mRNA-miRNA in the PF blood of the FMD. Immune hub DEGs and immune hub DEmiRNAs were selected for experimental verification using RT-qPCR. Results A total of 2744 differentially expressed genes (DEGs) and 356 differentially expressed miRNAs (DEmiRNAs) were identified in the PF blood group compared to the healthy blood group. Among them, 42 DEmiRNAs were negatively correlated with 20 immune DEGs from a total of 57 correlations. The DEGs were significantly associated with pathways related to CD molecules, immune disease, immune system, cytokine receptors, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, and NOD-like receptor signaling pathway. There were 240 immune-related DEGs, in which 186 immune-related DEGs were up-regulated and 54 immune-related DEGs were down-regulated. In the protein-protein interaction (PPI) analysis of immune-related signaling pathway, TYK2, TLR2, TLR4, IL18, CSF1, CXCL13, LCK, ITGB2, PIK3CB, HCK, CD40, CD86, CCL3, CCR7, IL2RA, TLR3, and IL4R were identified as the hub immune genes. The mRNA-miRNA coregulation analysis showed that let-7d, miR-324-3p, miR-760, miR-185, miR-149, miR-149-5p, and miR-1842-5p are key miRNAs that target DEGs involved in immune disease, immune system and immunoregulation. Conclusion The development and occurrence of PF were significantly influenced by the immune-related and apoptosis-related genes present in PF blood. mRNAs and miRNAs associated with the development and occurrence of PF in the FMD.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Li-Fan Hu
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yu-Jiawei Gu
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | | | - Xue-Mei Jiang
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Wu-Jiao Li
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jun-Sheng Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Guo-Sheng Xiao
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Hang Jie
- Jinfo Mountain Forest Ecosystem Field Scientific Observation and Research Station of Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| |
Collapse
|
2
|
Liu H, Zhang J, Liu J, Cao G, Xu F, Li X. Bactericidal Mechanisms of Chlorine Dioxide against Beta-Hemolytic Streptococcus CMCC 32210. Curr Issues Mol Biol 2023; 45:5132-5144. [PMID: 37367075 PMCID: PMC10297388 DOI: 10.3390/cimb45060326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Chlorine dioxide is a globally recognized green and efficient disinfectant. This study aims to investigate the bactericidal mechanism of chlorine dioxide using beta-hemolytic Streptococcus (BHS) CMCC 32210 as a representative strain. BHS was exposed to chlorine dioxide, the minimum bactericidal concentration (MBC) values of chlorine dioxide against BHS were determined by the checkerboard method in preparation for subsequent tests. Cell morphology was observed using electron microscopy. Protein content leakage, adenosine triphosphatase (ATPase) activity, and lipid peroxidation were determined by kits, and DNA damage was determined using agar gel electrophoresis. The concentration of chlorine dioxide during disinfection showed a linear relationship with the concentration of BHS. Scanning electron microscopy (SEM) results showed that chlorine dioxide caused significant damage to the cell walls of BHS at a concentration of 50 mg/L, but had no significant effect on Streptococcus exposed to different exposure times. Furthermore, the extracellular protein concentration increased with increasing chlorine dioxide concentration, while the total protein content remained unchanged. The activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase decreased with increasing chlorine dioxide concentration. Chlorine dioxide treatment led to significant lipid peroxidation and DNA degradation in BHS. Leakage of intracellular components indicated that chlorine dioxide damaged the cell membrane of BHS. Chlorine dioxide exposure resulted in oxidative damage to lipids and proteins, which negatively impacted the cell wall and membrane of Streptococcus. This caused increased permeability and inactivation of key enzymes (Na+/K+-ATPase and Ca2+/Mg2+-ATPase) involved in respiratory metabolism, ultimately leading to DNA degradation and bacterial death due to either content leakage or metabolic failure.
Collapse
Affiliation(s)
- Huan Liu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingju Zhang
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Liu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangjie Cao
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Xu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiubo Li
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
3
|
Zhao W, Cheng J, Luo Y, Fu W, Zhou L, Wang X, Wang Y, Yang Z, Yao X, Ren M, Zhong Z, Wu X, Ren Z, Li Y. MicroRNA let-7f-5p regulates PI3K/AKT/COX2 signaling pathway in bacteria-induced pulmonary fibrosis via targeting of PIK3CA in forest musk deer. PeerJ 2022; 10:e14097. [PMID: 36217380 PMCID: PMC9547585 DOI: 10.7717/peerj.14097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
Background Recent studies have characterized that microRNA (miRNA) is a suitable candidate for the study of bleomycin/LPS-induced pulmonary fibrosis, but the knowledge on miRNA in bacteria-induced pulmonary fibrosis (BIPF) is limited. Forest musk deer (Moschus berezovskii, FMD) is an important endangered species that has been seriously affected by BIPF. We sought to determine whether miRNA exist that modulates the pathogenesis of BIPF in FMD. Methods High-throughput sequencing and RT-qPCR were used to determine the differentially expressed miRNAs (DEmiRNAs) in the blood of BIPF FMD. The DEmiRNAs were further detected in the blood and lung of BIPF model rat by RT-qPCR, and the targeting relationship between candidate miRNA and its potential target gene was verified by dual-luciferase reporter activity assay. Furthermore, the function of the candidate miRNA was verified in the FMD lung fibroblast cells (FMD-C1). Results Here we found that five dead FMD were suffered from BIPF, and six circulating miRNAs (miR-30g, let-7f-5p, miR-27-3p, miR-25-3p, miR-9-5p and miR-652) were differentially expressed in the blood of the BIPF FMD. Of these, let-7f-5p showed reproducibly lower level in the blood and lung of the BIPF model rat, and the expression levels of PI3K/AKT/COX2 signaling pathway genes (PIK3CA, PDK1, Akt1, IKBKA, NF-κB1 and COX2) were increased in the lung of BIPF model rats, suggesting that there is a potential correlation between BIPF and the PI3K/AKT/COX2 signaling pathway. Notably, using bioinformatic prediction and experimental verification, we demonstrated that let-7f-5p is conserved across mammals, and the seed sequence of let-7f-5p displays perfect complementarity with the 3' UTR of PIK3CA gene and the expression of the PIK3CA gene was regulated by let-7f-5p. In order to determine the regulatory relationship between let-7f-5p and the PI3K/AKT/COX2 signaling pathway in FMD, we successfully cultured FMD-C1, and found that let-7f-5p could act as a negative regulator for the PI3K/Akt/COX2 signaling pathway in FMD-C1. Collectively, this study not only provided a study strategy for non-invasive research in pulmonary disease in rare animals, but also laid a foundation for further research in BIPF.
Collapse
Affiliation(s)
- Wei Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan Province, China
| | - Jianguo Cheng
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, Sichuan Province, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan Province, China
| | - Wenlong Fu
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, Sichuan Province, China
| | - Lei Zhou
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, Sichuan Province, China
| | - Xiang Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan Province, China
| | - Yin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan Province, China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan Province, China
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan Province, China
| | - Meishen Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan Province, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan Province, China
| | - Xi Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan Province, China
| | - Ziwei Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan Province, China
| | - Yimeng Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan Province, China
| |
Collapse
|
4
|
Tabata A, Nagamune H. Diversity of β-hemolysins produced by the human opportunistic streptococci. Microbiol Immunol 2021; 65:512-529. [PMID: 34591320 DOI: 10.1111/1348-0421.12936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
The genus Streptococcus infects a broad range of hosts, including humans. Some species, such as S. pyogenes, S. agalactiae, S. pneumoniae, and S. mutans, are recognized as the major human pathogens, and their pathogenicity toward humans has been investigated. However, many of other streptococcal species have been recognized as opportunistic pathogens in humans, and their clinical importance has been underestimated. In our previous study, the Anginosus group streptococci (AGS) and Mitis group streptococci (MGS) showed clear β-hemolysis on blood agar, and the factors responsible for the hemolysis were homologs of two types of β-hemolysins, cholesterol-dependent cytolysin (CDC) and streptolysin S (SLS). In contrast to the regular β-hemolysins produced by streptococci (typical CDCs and SLSs), genetically, structurally, and functionally atypical β-hemolysins have been observed in AGS and MGS. These atypical β-hemolysins are thought to affect and contribute to the pathogenic potential of opportunistic streptococci mainly inhabiting the human oral cavity. In this review, we introduce the diverse characteristics of β-hemolysin produced by opportunistic streptococci, focusing on the species/strains belonging to AGS and MGS, and discuss their pathogenic potential.
Collapse
Affiliation(s)
- Atsushi Tabata
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hideaki Nagamune
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
5
|
Ren Z, Yu D, Zhao W, Luo Y, Cheng J, Wang Y, Yang Z, Yao X, Yang W, Wu X, Li Y. Investigation and molecular identification of Eimeria sp. sampled from captive forest musk deer. PeerJ 2021. [DOI: 10.7717/peerj.11751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Forest musk deer (Moschus berezovskii) is an endangered, protected species in China. Intestinal coccidiosis is a significant problem for captive forest musk deer. However, there are few reports on the prevalence and molecular characteristics of Eimeria sp. in forest musk deer. We sought to investigate the prevalence of Eimeria sp. in forest musk deer in the Sichuan and Shaanxi provinces in China. We also investigated the molecular characteristics of Eimeria sp. by analyzing the 18S rRNA gene. We collected a total of 328 fecal samples from forest musk deer on seven farms throughout the Sichuan and Shaanxi provinces. We extracted this parasite’s DNA and used this as a template for nested PCR amplification. The 18S rRNA gene fragment was associated with the plasmid vector, and these products were introduced into Escherichia coli (DH5α). The cultured bacterial solution was used as a PCR reaction template for identification purposes. We collected 328 fecal samples from forest musk deer in Lixian (n = 54), Maoxian (n = 52), Ma’erkang (n = 49), Dujiangyan (n = 55), Hanyuan (n = 41), Luding (n = 36) and Weinan (n = 41). One hundred ninety-eight (60.37%) fecal samples tested positive for Eimeria sp. . In our analysis of the 18S rRNA gene we found 34 types of Eimeria sp. with a similarity of 90.5–100%. We constructed a phylogenetic tree based on the parasite’s 18S rRNA gene sequence. Our findings indicated that the Eimeria sp. that parasitized the intestinal tract of forest musk deer was closely related to Eimeria alabamensis from Bos taurus and Eimeria ahsata from Ovis aries. To the best of our knowledge, ours was the first investigation and molecular identification of Eimeria sp. sampled from captive forest musk deer in China. Our results provide epidemiological data for the monitoring and prevention of Eimeria sp. in captive forest musk deer.
Collapse
Affiliation(s)
- Ziwei Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Dong Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Wei Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Jianguo Cheng
- Sichuan Institute of Musk Deer Breeding, Sichuan, China
| | - Yin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Wei Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Xi Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Yimeng Li
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| |
Collapse
|
6
|
Zhao W, Ren Z, Luo Y, Cheng J, Wang J, Wang Y, Yang Z, Yao X, Zhong Z, Yang W, Wu X. Metagenomics analysis of the gut microbiome in healthy and bacterial pneumonia forest musk deer. Genes Genomics 2021; 43:43-53. [PMID: 33428153 DOI: 10.1007/s13258-020-01029-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The forest musk deer (FMD, Moschus berezovskii) is an threatened species in China. Bacterial pneumonia was found to seriously restrict the development of FMD captive breeding. Historical evidence has demonstrated the relationship between immune system and intestinal Lactobacillus in FMD. OBJECTIVE We sought to elucidate the differences in the gut microbiota of healthy and bacterial pneumonia FMD. METHODS The bacterial pneumonia FMD was demonstrated by bacterial and pathological diagnosis, and the gut microbiome of healthy and bacterial pneumonia FMD was sequenced and analysed. RESULTS There are three pathogens (Pseudomonas aeruginosa, Streptococcus equinus and Trueperella pyogenes) isolated from the bacterial pneumonia FMD individuals. Compared with the healthy group, the abundance of Firmicutes and Proteobacteria in the pneumonia group was changed, and a high level of Proteobacteria was found in the pneumonia group. In addition, a higher abundance of Acinetobacter (p = 0.01) was observed in the population of the pneumonia group compared with the healthy group. Several potentially harmful bacteria and disease-related KEGG subsystems were only found in the gut of the bacterial pneumonia group. Analysis of KEGG revealed that many genes related to type IV secretion system, type IV pilus, lipopolysaccharide export system, HTH-type transcriptional regulator/antitoxin MqsA, and ArsR family transcriptional regulator were significantly enriched in the metagenome of the bacterial pneumonia FMD. CONCLUSION Our results demonstrated that the gut microbiome was significantly altered in the bacterial pneumonia group. Overall, our research improves the understanding of the potential role of the gut microbiota in the FMD bacterial pneumonia.
Collapse
Affiliation(s)
- Wei Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Ziwei Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China.
| | - Jianguo Cheng
- Sichuan Institute of Musk Deer Breeding, Chengdu, 610000, Sichuan, People's Republic of China
| | - Jie Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Yin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Wei Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Xi Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| |
Collapse
|