1
|
Mady EA, Osuga H, Toyama H, El-Husseiny HM, Inoue R, Murase H, Yamamoto Y, Nagaoka K. Relationship between the components of mare breast milk and foal gut microbiome: shaping gut microbiome development after birth. Vet Q 2024; 44:1-9. [PMID: 38733121 PMCID: PMC11089936 DOI: 10.1080/01652176.2024.2349948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The gut microbiota (GM) is essential for mammalian health. Although the association between infant GM and breast milk (BM) composition has been well established in humans, such a relationship has not been investigated in horses. Hence, this study was conducted to analyze the GM formation of foals during lactation and determine the presence of low-molecular-weight metabolites in mares' BM and their role in shaping foals' GM. The fecal and BM samples from six pairs of foals and mares were subjected to 16S ribosomal RNA metagenomic and metabolomic analyses, respectively. The composition of foal GM changed during lactation time; hierarchical cluster analysis divided the fetal GM into three groups corresponding to different time points in foal development. The level of most metabolites in milk decreased over time with increasing milk yield, while threonic acid and ascorbic acid increased. Further analyses revealed gut bacteria that correlated with changes in milk metabolites; for instance, there was a positive correlation between Bacteroidaceae in the foal's gut microbiota and serine/glycine in the mother's milk. These findings help improve the rearing environment of lactating horses and establish artificial feeding methods for foals.
Collapse
Affiliation(s)
- Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, Egypt
| | - Haruna Osuga
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haruka Toyama
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Science, Setsunan University, Osaka, Japan
| | - Harutaka Murase
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido, Japan
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
2
|
Bornbusch SL, Power ML, Schulkin J, Drea CM, Maslanka MT, Muletz-Wolz CR. Integrating microbiome science and evolutionary medicine into animal health and conservation. Biol Rev Camb Philos Soc 2024; 99:458-477. [PMID: 37956701 DOI: 10.1111/brv.13030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Microbiome science has provided groundbreaking insights into human and animal health. Similarly, evolutionary medicine - the incorporation of eco-evolutionary concepts into primarily human medical theory and practice - is increasingly recognised for its novel perspectives on modern diseases. Studies of host-microbe relationships have been expanded beyond humans to include a wide range of animal taxa, adding new facets to our understanding of animal ecology, evolution, behaviour, and health. In this review, we propose that a broader application of evolutionary medicine, combined with microbiome science, can provide valuable and innovative perspectives on animal care and conservation. First, we draw on classic ecological principles, such as alternative stable states, to propose an eco-evolutionary framework for understanding variation in animal microbiomes and their role in animal health and wellbeing. With a focus on mammalian gut microbiomes, we apply this framework to populations of animals under human care, with particular relevance to the many animal species that suffer diseases linked to gut microbial dysfunction (e.g. gut distress and infection, autoimmune disorders, obesity). We discuss diet and microbial landscapes (i.e. the microbes in the animal's external environment), as two factors that are (i) proposed to represent evolutionary mismatches for captive animals, (ii) linked to gut microbiome structure and function, and (iii) potentially best understood from an evolutionary medicine perspective. Keeping within our evolutionary framework, we highlight the potential benefits - and pitfalls - of modern microbial therapies, such as pre- and probiotics, faecal microbiota transplants, and microbial rewilding. We discuss the limited, yet growing, empirical evidence for the use of microbial therapies to modulate animal gut microbiomes beneficially. Interspersed throughout, we propose 12 actionable steps, grounded in evolutionary medicine, that can be applied to practical animal care and management. We encourage that these actionable steps be paired with integration of eco-evolutionary perspectives into our definitions of appropriate animal care standards. The evolutionary perspectives proposed herein may be best appreciated when applied to the broad diversity of species under human care, rather than when solely focused on humans. We urge animal care professionals, veterinarians, nutritionists, scientists, and others to collaborate on these efforts, allowing for simultaneous care of animal patients and the generation of valuable empirical data.
Collapse
Affiliation(s)
- Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
| | - Michael L Power
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Washington, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
| | - Jay Schulkin
- Department of Obstetrics & Gynecology, University of Washington School of Medicine, 1959 NE Pacific St., Box 356460, Seattle, WA, 98195, USA
| | - Christine M Drea
- Department of Evolutionary Anthropology, Duke University, 104 Biological Sciences, Campus Box 90383, Durham, NC, 27708, USA
| | - Michael T Maslanka
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW, Washington, DC, 20008, USA
| |
Collapse
|
3
|
Klinhom S, Sriwichaiin S, Kerdphoo S, Khonmee J, Chattipakorn N, Chattipakorn SC, Thitaram C. Characteristics of gut microbiota in captive Asian elephants (Elephas maximus) from infant to elderly. Sci Rep 2023; 13:23027. [PMID: 38155244 PMCID: PMC10754835 DOI: 10.1038/s41598-023-50429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
Gut microbiota play an important role in the health and disease of Asian elephants, however, its characteristics at each stage of life have not been thoroughly investigated in maintaining and regulating health of elephants. This study, therefore, aimed to characterize the profiles of the gut microbiota of captive Asian elephants from infants to the elderly. Gut microbiota were identified by 16S rRNA sequencing from the feces of captive Asian elephants with varying age groups, including infant calves, suckling calves, weaned calves, subadult and adult elephants, and geriatric elephants. The diversity of the gut microbiota was lowest in infants, stable during adulthood, and slightly decreased in the geriatric period. The gut microbiota of the infant elephants was dominated by milk-fermenting taxa including genus Bifidobacterium of family Bifidobacteriaceae together with genus Akkermansia. The fiber-fermenting taxa such as Lachnospiraceae_NK3A20_group were found to be increased in suckling elephants in differential abundance analysis by Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC). The gut microbiota profiles after weaning until the adult period has been uniform as indicated by no significant differences in beta diversity between groups. However, the composition of the gut microbiota was found to change again in geriatric elephants. Understanding of the composition of the gut microbiota of captive Asian elephants at various life stages could be beneficial for promoting good health throughout their lifespan, as well as ensuring the welfare of captive elephants.
Collapse
Affiliation(s)
- Sarisa Klinhom
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaruwan Khonmee
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
4
|
Klinsawat W, Uthaipaisanwong P, Jenjaroenpun P, Sripiboon S, Wongsurawat T, Kusonmano K. Microbiome variations among age classes and diets of captive Asian elephants (Elephas maximus) in Thailand using full-length 16S rRNA nanopore sequencing. Sci Rep 2023; 13:17685. [PMID: 37848699 PMCID: PMC10582034 DOI: 10.1038/s41598-023-44981-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Asian elephant (Elephas maximus) is the national symbol of Thailand and linked to Thai history and culture for centuries. The elephant welfare improvement is one of the major components to achieve sustainable captive management. Microbiome inhabiting digestive tracts have been shown with symbiotic relations to host health. This work provided high-resolution microbiome profiles of 32 captive elephants at a species level by utilizing full-length 16S rRNA gene nanopore sequencing. Eleven common uncultured bacterial species were found across elephants fed with solid food including uncultured bacterium Rikenellaceae RC9 gut group, Kiritimatiellae WCHB1-41, Phascolarctobacterium, Oscillospiraceae NK4A214 group, Christensenellaceae R-7 group, Oribacterium, Oscillospirales UCG-010, Lachnospiraceae, Bacteroidales F082, uncultured rumen Rikenellaceae RC9 gut group, and Lachnospiraceae AC2044 group. We observed microbiome shifts along the age classes of baby (0-2 years), juvenile (2-10 years), and adult (> 10 years). Interestingly, we found distinct microbiome profiles among adult elephants fed with a local palm, Caryota urens, as a supplement. Potential beneficial microbes have been revealed according to the age classes and feed diets. The retrieved microbiome data could be provided as good baseline microbial profiles for monitoring elephant health, suggesting further studies towards dietary selection suitable for each age class and the use of local supplementary diets.
Collapse
Affiliation(s)
- Worata Klinsawat
- Conservation Ecology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pichahpuk Uthaipaisanwong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supaphen Sripiboon
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Kanthida Kusonmano
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
- Bioinformatics and Systems Biology Program, Schools of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|
5
|
Zhang C, Chen J, Wu Q, Xu B, Huang Z. The Gut Microbiota of Young Asian Elephants with Different Milk-Containing Diets. Animals (Basel) 2023; 13:ani13050916. [PMID: 36899773 PMCID: PMC10000238 DOI: 10.3390/ani13050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Evaluating the association between milk-containing diets and the microbiomes of young Asian elephants could assist establishing optimal breast milk supplementation to improve offspring survival rates. The microbiomes of young Asian elephants on different milk-containing diets (elephant milk only, elephant milk-plant mixed feed, and goat milk-plant mixed feed) were investigated using high-throughput sequencing of 16S rRNA genes and phylogenetic analysis. Microbial diversity was lower in the elephant milk-only diet group, with a high abundance of Proteobacteria compared to the mixed-feed diet groups. Firmicutes and Bacteroidetes were dominant in all groups. Spirochaetae, Lachnospiraceae, and Rikenellaceae were abundant in the elephant milk-plant mixed-feed diet group, and Prevotellaceae was abundant in the goat milk-plant mixed-feed diet group. Membrane transport and cell motility metabolic pathways were significantly enriched in the elephant milk-plant mixed-feed diet group, whereas amino acid metabolism and signal transduction pathways were significantly enriched in the goat milk-plant mixed-feed diet group. The intestinal microbial community composition and associated functions varied significantly between diets. The results suggest that goat milk is not suitable for young elephants. Furthermore, we provide new research methods and directions regarding milk source evaluation to improve elephant survival, wellbeing, and conservation.
Collapse
Affiliation(s)
- Chengbo Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
| | - Junmin Chen
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Correspondence:
| |
Collapse
|
6
|
Feng X, Hua R, Zhang W, Liu Y, Luo C, Li T, Chen X, Zhu H, Wang Y, Lu Y. Comparison of the gut microbiome and resistome in captive African and Asian elephants on the same diet. Front Vet Sci 2023; 10:986382. [PMID: 36875997 PMCID: PMC9978182 DOI: 10.3389/fvets.2023.986382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Elephants are endangered species and threatened with extinction. They are monogastric herbivorous, hindgut fermenters and their digestive strategy requires them to consume large amounts of low quality forage. The gut microbiome is important to their metabolism, immune regulation, and ecological adaptation. Our study investigated the structure and function of the gut microbiota as well as the antibiotic resistance genes (ARGs) in captive African and Asian elephants on the same diet. Results showed that captive African and Asian elephants had distinct gut bacterial composition. MetaStats analysis showed that the relative abundance of Spirochaetes (FDR = 0.00) and Verrucomicrobia (FDR = 0.01) at the phylum level as well as Spirochaetaceae (FDR = 0.01) and Akkermansiaceae (FDR = 0.02) at the family level varied between captive African and Asian elephants. Among the top ten functional subcategories at level 2 (57 seed pathway) of Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the relative gene abundance of cellular community-prokaryotes, membrane transport, and carbohydrate metabolism in African elephants were significantly lower than those in Asian elephants (0.98 vs. 1.03%, FDR = 0.04; 1.25 vs. 1.43%, FDR = 0.03; 3.39 vs. 3.63%; FDR = 0.02). Among the top ten functional subcategories at level 2 (CAZy family) of CAZy database, MetaStats analysis showed that African elephants had higher relative gene abundance of Glycoside Hydrolases family 28 (GH 28) compared to Asian elephants (0.10 vs. 0.08%, FDR = 0.03). Regarding the antibiotic resistance genes carried by gut microbes, MetaStats analysis showed that African elephants had significantly higher relative abundance of vanO (FDR = 0.00), tetQ (FDR = 0.04), and efrA (FDR = 0.04) than Asian elephants encoding resistance for glycopeptide, tetracycline, and macrolide/rifamycin/fluoroquinolone antibiotic, respectively. In conclusion, captive African and Asian elephants on the same diet have distinct gut microbial communities. Our findings established the ground work for future research on improving gut health of captive elephants.
Collapse
Affiliation(s)
- Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Rong Hua
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Wanying Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuhang Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Caiyu Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tonghao Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaolin Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Youcong Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yan Lu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| |
Collapse
|
7
|
Common SM, Yun Y, Silva-Fletcher A, Thitaram C, Janyamethakul T, Khammesri S, Molenaar FM. Developing a non-invasive method of detecting elephant endotheliotropic herpesvirus infections using faecal samples. Vet Rec 2021; 190:e833. [PMID: 34472109 DOI: 10.1002/vetr.833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Elephant endotheliotropic herpesvirus (EEHV)-associated haemorrhagic disease (EEHV-HD) is a leading cause of death in Asian elephant calves across the world. Cases of EEHV-HD have been detected in free-living calves through post-mortem examination (PME) indicating the presence of the virus in the wild. In the absence of a non-invasive sampling method, little research into free-living populations has been possible. This study aimed to provide evidence that faeces can be used as a non-invasive sampling method for the detection of EEHV excretion using quantitative polymerase chain reaction. METHODS Serial saliva swabs and faecal samples were taken from five captive Asian elephants in Thailand over 12 weeks. To ensure the presence of detectable elephant DNA within the sample, qPCR was run for amplification of the Asian elephant tumour necrosis factor (TNF-α) gene, EEHV1 and EEHV4. RESULTS Of 28 sample pairs, seven saliva samples were positive for EEHV, of which two had paired positive faecal samples. CONCLUSIONS This study presents the first evidence that EEHV is excreted in faeces at detectable levels. This method may in future be used for improved understanding of the epidemiology of EEHV in free-living elephant populations, as well as detection of EEHV excretion in captive herds.
Collapse
Affiliation(s)
- Sophie M Common
- Institute of Zoology, Zoological Society of London, Regents Park, London, NW8 7LS, UK.,The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Yaoprapa Yun
- Center of Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University (FVM-CMU), Chiang Mai, Thailand
| | | | - Chatchote Thitaram
- Center of Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University (FVM-CMU), Chiang Mai, Thailand
| | | | - Siripat Khammesri
- Center of Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University (FVM-CMU), Chiang Mai, Thailand
| | - Fieke M Molenaar
- Whipsnade Zoo, Zoological Society of London, Dunstable, Bedfordshire, UK
| |
Collapse
|
8
|
Contrasting gut microbiota in captive Eurasian otters (Lutra lutra) by age. Arch Microbiol 2021; 203:5405-5416. [PMID: 34398307 PMCID: PMC8502154 DOI: 10.1007/s00203-021-02526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Understanding the gut microbiota characteristics of endangered species such as the Eurasian otter (Lutra lutra), especially in their early stages of life, could be essential for improving their management and ex situ conservation strategies. Here, we analyzed the gut microbiota diversity, composition, and function of captive Eurasian otters at different ages using high-throughput 16S rRNA gene sequencing. We found that: (1) Clostridiaceae was abundant in all age stages; (2) Lactococcus in cubs is thought to predominate for digesting milk; (3) bacteria associated with amino acid metabolism increase with age, while bacteria associated with carbohydrate metabolism decrease with age, which is likely due to decrease in dietary carbohydrate content (e.g., milk) and increase in dietary protein contents (e.g., fishes) with age; and (4) fish-related bacteria were detected in feces of healthy adults and juveniles. Overall, the gut microbiota of captive Eurasian otters was taxonomically and functionally different by age, which is thought to be attributed to the difference in the diet in their life stages. This study provided baseline information regarding the gut microbiota of Eurasian otters for the first time and contributes to improvement in their management in captivity.
Collapse
|