1
|
Fiedorowicz J, Paździor-Czapula K, Otrocka-Domagała I. Canine colorectal proliferative lesions: a retrospective study of 217 cases. BMC Vet Res 2025; 21:145. [PMID: 40045318 PMCID: PMC11881498 DOI: 10.1186/s12917-025-04567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Colorectal proliferative lesions are not common in dogs. However, recently we have observed an increase in the number of diagnosed cases and a lack of publications providing current epidemiological data on lesions of the large intestine in dogs. The aim of this study was a retrospective analysis of 217 canine colorectal non-neoplastic and neoplastic nodular lesions, and assessment of the frequency of occurrence of individual lesions and whether there is a risk of their occurrence depending on age, sex, or dog breed. RESULTS Half of the cases (52.5%) were malignant tumours with a significant predominance of adenocarcinoma (42.9%). In the group of malignant non-epithelial lesions, lymphoma and sarcomas predominated (4.1% and 4.1%, respectively) followed by three cases of plasmacytoma. Benign neoplastic tumours constituted almost one-third of all cases (26.7%) with obvious dominance of adenoma (24.0%). Benign mesenchymal tumours were represented only by leiomyoma (2.8%). The non-neoplastic lesions were represented by a heterogeneous group of polyps (20.3%) with a slight advantage of hyperplastic type (9.7%) and less numerous inflammatory, fibroblastic, lymphoid, and hamartomatous polyps. One case of ganglioneuromatosis in hamartomatous polyp was diagnosed. The vast majority of lesions, both non-neoplastic and neoplastic, were found in the rectum. French Bulldogs were the most numerous breeds in our study, especially among adenomas. Furthermore, benign tumours were diagnosed in younger animals than malignant tumours. CONCLUSIONS The results of our research provided new data expanding knowledge about the epidemiology of colorectal neoplastic and non-neoplastic proliferative lesions in dogs. Our results indicate that the majority of colorectal proliferative lesions in dogs are malignant, which is alarming. French Bulldogs could possibly be predisposed to proliferative lesions of the large intestine, and this predisposition was statistically confirmed in adenomas. Moreover, benign tumours may occur in animals as young as 1-2 years old.
Collapse
Affiliation(s)
- Joanna Fiedorowicz
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Katarzyna Paździor-Czapula
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
2
|
Fu J, Li G, Li X, Song S, Cheng L, Rui B, Jiang L. Gut commensal Alistipes as a potential pathogenic factor in colorectal cancer. Discov Oncol 2024; 15:473. [PMID: 39331213 PMCID: PMC11436608 DOI: 10.1007/s12672-024-01393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024] Open
Abstract
Although previous research has shown that inflammation is associated with development of colorectal cancer (CRC), questions remain about whether inflammatory factor-secreting bacteria play a crucial role in CRC development. The potential role of gut microbiota in secreting inflammatory factors involved in the carcinogenesis of CRC among Chinese patients was explored in this study. 16S rRNA sequencing was utilized to evaluate the distinct microbial characteristics between patients with CRC and colorectal adenoma. The serum levels of TNF-α, IL-6 and IL-10 were measured using Enzyme-linked immunosorbent assay (ELISA), while the expression of LRG1 and TGF-β1 in tissues was evaluated by immunohistochemistry. The correlation between gut microbiota and inflammatory factor signaling was analyzed. Compared with the adenoma group, CRC patients exhibit distinct pathologies. Moreover, elevated levels of CEA, erythrocytes and haemoglobin in the blood of CRC patients were found. In addition, CRC patients have significantly higher levels of TNF-α, IL-6, IL-10, LRG1 and TGF-β1. Spearman correlation analysis revealed that LRG1 was positively related to IL-6 and TNF-α, respectively. The correlation analysis results of TGF-β1 were consistent with the above. The abundance of Blautia and Streptococcus was lower in CRC patients, while the relative abundance of Alistipes, Peptostreptococcus and Porphyromonas was significantly elevated. Moreover, positive correlations between Alistipes and inflammatory factor signaling were also found. Our results suggest that gut commensal Alistipes is a key bacterium with pro-inflammatory properties in the CRC carcinogenesis. TNF-α and IL-6 associated with Alistipes might activate LRG1/TGF-β1 signaling which contributed to the carcinogenesis of CRC.
Collapse
Affiliation(s)
- Jingjing Fu
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
- Anhui No.2 Provincial People's Hospital Clinical College, Anhui Medical University, Hefei, 230041, Anhui, China
| | - Guangyao Li
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, 241000, Anhui, China
| | - Xiaoping Li
- Department of Gastroenterology Department 1, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
| | - Shasha Song
- Department of Gastroenterology, the Second Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Lijuan Cheng
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
- Anhui No.2 Provincial People's Hospital Clinical College, Anhui Medical University, Hefei, 230041, Anhui, China
| | - Beibei Rui
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
- Anhui No.2 Provincial People's Hospital Clinical College, Anhui Medical University, Hefei, 230041, Anhui, China
| | - Lei Jiang
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China.
- Anhui No.2 Provincial People's Hospital Clinical College, Anhui Medical University, Hefei, 230041, Anhui, China.
| |
Collapse
|
3
|
Teoh YB, Jiang JJ, Yamasaki T, Nagata N, Sugawara T, Hasebe R, Ohta H, Sasaki N, Yokoyama N, Nakamura K, Kagawa Y, Takiguchi M, Murakami M. An inflammatory bowel disease-associated SNP increases local thyroglobulin expression to develop inflammation in miniature dachshunds. Front Vet Sci 2023; 10:1192888. [PMID: 37519997 PMCID: PMC10375717 DOI: 10.3389/fvets.2023.1192888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Inflammatory colorectal polyp (ICRP) in miniature dachshunds (MDs) is a chronic inflammatory bowel disease (IBD) characterized by granulomatous inflammation that consists of neutrophil infiltration and goblet cell hyperplasia in the colon. Recently, we identified five MD-associated single-nucleotide polymorphisms (SNPs), namely PLG, TCOF1, TG, COL9A2, and COL4A4, by whole-exome sequencing. Here, we investigated whether TG c.4567C>T (p.R1523W) is associated with the ICRP pathology. We found that the frequency of the T/T SNP risk allele was significantly increased in MDs with ICRP. In vitro experiments showed that TG expression in non-immune cells was increased by inducing the IL-6 amplifier with IL-6 and TNF-α. On the other hand, a deficiency of TG suppressed the IL-6 amplifier. Moreover, recombinant TG treatment enhanced the activation of the IL-6 amplifier, suggesting that TG is both a positive regulator and a target of the IL-6 amplifier. We also found that TG expression together with two NF-κB targets, IL6 and CCL2, was increased in colon samples isolated from MDs with the T/T risk allele compared to those with the C/C non-risk allele, but serum TG was not increased. Cumulatively, these results suggest that the T/T SNP is an expression quantitative trait locus (eQTL) of TG mRNA in the colon, and local TG expression triggered by this SNP increases the risk of ICRP in MDs via the IL-6 amplifier. Therefore, TG c.4567C>T is a diagnostic target for ICRP in MDs, and TG-mediated IL-6 amplifier activation in the colon is a possible therapeutic target for ICRP.
Collapse
Affiliation(s)
- Yong Bin Teoh
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Noriyuki Nagata
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Toshiki Sugawara
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Noboru Sasaki
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomu Yokoyama
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kensuke Nakamura
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Chen W, Guo Z, Yu H, Liu Q, Fu M. Molecularly imprinted colloidal array with multi-boronic acid sites for glycoprotein detection under neutral pH. J Colloid Interface Sci 2021; 607:1163-1172. [PMID: 34571303 DOI: 10.1016/j.jcis.2021.09.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
Glycoproteins play vital roles in living organisms and often serve as biomarkers for some disease. However, due to the low content of glycoprotein in biological fluids, selective detection of glycoproteins is still a challenging issue that needs to be addressed. In this study, molecularly imprinted colloidal array with multi-boronic acid sites for glycoprotein detection under physiological pH was proposed. Monodispersed glycoprotein imprinted particles (SiO2@PEI/MIPs) was first prepared based on surface imprinting strategy using horseradish peroxidase (HRP) as template, and polyethyleneimine (PEI) was used to increase the number of boronic acid groups. The binding experiment indicated that the SiO2@PEI/MIPs hold satisfactory adsorption capacity (1.41 μmol/g), rapid adsorption rate (40 min) and preferable selectivity toward HRP. Then the SiO2@PEI/MIPs was assembled into close-packed colloidal array to construct a label free optical sensor (denoted as GICA). Benefiting from the high ordered photonic crystal structure, binding of HRP onto the GICA could be directly readout from the changes in structure color and diffracted wavelength. The structure color of the GICA changed from bright blue to yellow with the diffraction wavelength red shifted 59 nm when the HRP concentration increased from 2.5 to 15 μmol/L. Importantly, the GICA was capable of detecting HRP from human serum samples. All those results indicated the potential of the GICA for naked-eye detection of glycoprotein.
Collapse
Affiliation(s)
- Wei Chen
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Zhiyang Guo
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Hao Yu
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Qingyun Liu
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Min Fu
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|